

6 March 2009

ENVIRONMENTAL SITE ASSESSMENT

Sheep Hill Marine Port Facility Baseline Study

Submitted to: Centrex Metals Ltd Level 3, 100 Pirie Street Adelaide SA 5000

Report Number:087661006 030 R Rev1Distribution:

Centrex Metals Ltd - 2 copies Centrex Metals Ltd - 1 CD Golder Associates - 1 copy

REPORT

A world of capabilities delivered locally

Summary of Investigations

The site is located on the Eyre Peninsula at Sheep Hill, approximately 20 km north east of Tumby Bay. The site includes approximately 105 ha of coastal land and a potential road and rail transport access corridor approximately 8 km long x 0.3 km wide generally following the alignment of the existing Swaffers Road.

This report presents the results of a environmental site assessment undertaken for the purpose of obtaining baseline chemical information to characterise the existing site to assist in planning for the proposed development as a deep water port.

The assessment included an investigation of historical site activities and limited soil and groundwater investigations to further assess potential contamination of the Site from the historical activities. Results of the site history investigation indicated that the Site was previously used for agricultural activities.

Intrusive soil and groundwater investigations were spaced across the Site in a grid pattern to provide a geographical spread of assessment locations.

Limited Soil Assessment

Intrusive soil investigations included the collection of soil samples following the drilling of 8 boreholes, excavation of 32 test pits and the collection of 6 surface grab samples across the Site and transport access corridor.

Results of the soil assessment indicated that chemical concentrations were generally below the laboratory LOR or below the adopted investigation criteria for disposal and for the protection of human health and ecological receptors. There were samples with concentrations of copper, zinc, vanadium and TPH exceeding the NEPM EIL guideline and Waste Fill disposal criteria. However, sample concentrations were below the NEPM HIL[F] guideline for commercial/industrial landuse and the 95% Upper Confidence Limits (UCLs) of mean analyte concentrations were all below the NEPM EIL guideline and Waste Fill disposal criteria. The vanadium and copper concentrations were considered to be regional.

The TPH C_{10} - C_{36} concentration of 2,000 mg/kg, measured in the surface sample recovered from BH08, was associated with above average metal concentrations. It represents an oily hydrocarbon either from the drilling rig or support vehicles used during the investigations or represents possible random impacts from the many years of farming activities in the region. The PID reading for this sample was 0.0 ppm and no odours or visible evidence of contamination was observed.

The measured pH values ranged from 6.5 to 10.3. pH values above 9.0 are considered to be elevated and alkaline. However, the measurements for samples recovered from the port site and transport corridor are likely to be regionally influenced, with elevated measurements attributable to the prevalence of calcareous formations in the area.

Limited Groundwater Assessment

Groundwater investigations included the drilling and installation of eight groundwater wells at the proposed port site to a maximum depth of 21.5 m. A single, multi-lithology (different rocks contain the groundwater) aquifer is inferred beneath the site. Groundwater is hosted in this aquifer just above mean sea level (<3 m AHD) in either fractured rocks (granite, gneiss or schist) or unconsolidated sediments.

We interpret this uppermost aquifer to be unconfined and potentially the receiving environment for contaminants released to the land surface or just below. Groundwater appears to move from a ridge towards the east (sea), north (sandy beach to the north of the site) and west/northwest. The northwesterly

flow appears to be the most significant as it connects the fractured rock environment to the sedimentary deposits in a deltaic dampland.

The salinity, as measured by total dissolved solids ranges between fresh and saline water, with the majority of bores yielding brackish water. Considering the climate and expected low groundwater recharge, the presence of freshwater in one bore was unexpected.

All the reported groundwater samples were of sodium-chloride type (sodium being the major cation and chloride the dominant anion). Sodium-chloride type groundwater is typical to coastal groundwater discharge areas. Laboratory reported dissolved metals exceed SA EPA EPP criteria in all bores (but no bore exceeds systemically the metal guidelines) and in an unpredictable pattern. Considering the current land use and the general lack of potential contaminants, the most likely explanation is that the metals listed occur naturally and are the product of groundwater–metamorphised rock interaction. Pesticides and hydrocarbons were below their respective limits for reporting.

Golder undertook a groundwater bore reconnaissance survey of these wells in consultation with the current landowners. This survey indicated that the wells listed in government databases have either been decommissioned, are no longer operational or their location is unknown. We understand that the reasons for abandoning these bores include poor groundwater quality and the introduction of a piped water supply to the area.

Table of Contents

1.0	INTRO	INTRODUCTION					
	1.1	General	1				
	1.2	Background	1				
2.0	SITE D	DESCRIPTION	2				
	2.1	Site Identification	2				
	2.2	Current Site Description and Land Use	2				
	2.3	Geology	2				
	2.4	Topography	3				
	2.5	Bore Search	3				
3.0	SCOP	E OF WORKS AND METHODOLOGY	5				
	3.1	Soil Investigation	5				
	3.1.1	Sampling Rationale and Methodology	5				
	3.1.2	Chemical Analysis	6				
	3.1.3	Assessment Criteria	6				
	3.2	Groundwater Investigations	6				
	3.2.1	General	6				
	3.2.2	Installation Methods and Materials of Construction	7				
	3.2.3	Sampling	8				
	3.2.4	Chemical Analysis	8				
	3.2.5	Assessment Criteria	9				
4.0	QUAL	ITY ASSURANCE / QUALITY CONTROL	10				
5.0	SUMM	IARY OF ASSESSMENT RESULTS	11				
	5.1	Soil Investigation	11				
	5.1.1	Summary of Subsurface Conditions – Port Site	11				
	5.1.2	Summary of Subsurface Conditions – Transport Access Corridor	13				
	5.1.3	Summary of Visual and Olfactory Contamination	14				
	5.1.4	Summary of Analytical Results	14				
	5.2	Groundwater Investigation	15				
	5.2.1	Groundwater Levels	15				
	5.2.2	Groundwater Field Measurements and Observations	16				
	5.2.3	Summary of Analytical Results	16				

6.0	DISCUS	SSION	. 17		
	6.1	Summary of Investigations	. 17		
	6.2	Limited Soil Assessment	. 17		
	6.3	Limited Groundwater Assessment	. 17		
	6.3.1	Hydrostratigraphy	. 18		
	6.3.2	Lateral Groundwater Flow	. 18		
	6.3.3	Groundwater Recharge	. 18		
	6.3.4	Groundwater Discharge	. 18		
	6.4	Groundwater Quality	. 19		
	6.4.1	Salinity	. 19		
	6.4.2	Ionic Composition	. 19		
	6.4.3	Dissolved Metals	. 19		
	6.4.4	Pesticides and Hydrocarbons	. 20		
	6.4.5	Summary of Groundwater Quality	. 20		
7.0	REFERENCES				
8.0	LIMITA	TIONS	22		

TABLES

Table 1: Sheep Hill Site Information	2
Table 2: Shallow Groundwater Bore Information	3
Table 3: Groundwater Monitoring Wells	7
Table 4: Environmental Ranking System for Soils	14
Table 5: Summary of Groundwater Levels	15
Table 6: Summary of Groundwater Field Measurements	

APPENDICES

FIGURES

Figure 1 – Site Location Plan

Figure 2 – Surrounding Land Use

Figure 3A – Investigation Location Plan (Test Pits TP01 to TP24 and Boreholes BH01 to BH08)

Figure 3B – Investigation Location Plan (Test Pits TP25 to TP32 and Surface Samples)

Figure 4 - Interpreted Total Dissolved Solids in Groundwater

Figure 5 – Interpreted Groundwater Elevation

APPENDIX A

DWLBC Information for Groundwater

APPENDIX B Reports of Test Pits and Boreholes

APPENDIX C QA/QC Procedures

APPENDIX D Groundwater Well Permits

APPENDIX E Groundwater Well Construction Details

APPENDIX F

Groundwater Well Development and Sampling Forms

APPENDIX G Summary Tables of Analytical Data - Groundwater

APPENDIX H Summary Tables of Analytical Data - Soil

APPENDIX I Limitations

1.0 INTRODUCTION

1.1 General

Golder Associates Pty Ltd (Golder Associates) was engaged by Centrex Metals Ltd (Centrex) to undertake a baseline investigation of soil and groundwater quality at the site of a proposed deep water marine port. The site is located on the Eyre Peninsula at Sheep Hill, approximately 20 km north east of Tumby Bay. The location of the site is shown on Figure 1.

The investigation program was completed in general accordance with the Golder proposal, "*Sheep Hill Marine Port Facility – Development Approval and Baseline Study Proposal*", dated 11 August 2008 (Reference P87663074).

The aim of the baseline soil and groundwater study is to assess pre-existing soil and groundwater conditions at the site to allow a comparison of the existing contaminant levels (if present) with those present in the soils and groundwater when Centrex cease operations and exit the land. The report includes details of soil and groundwater investigations, the results of these investigations and discussions and recommendations based on analyses of investigation results.

1.2 Background

Centrex is an iron ore explorer on Eyre Peninsula with a number of exploration interests. The Wilgerup Mine is currently in start up phase.

Centrex requires a deep water marine port to facilitate transport of mined product to overseas markets. Existing marine shipping facilities within the Eyre Peninsula may not be suitable. Centrex has purchased two blocks of land at Sheep Hill with a view to developing a deep water marine port. Centrex has not provided a detailed project description or design to Golder, at the time of report preparation.

The Sheep Hill proposed port site includes approximately 105 ha of coastal land and a potential road and rail transport access corridor approximately 8 km long x 0.3 km wide generally following the alignment of the existing Swaffers Road.

2.0 SITE DESCRIPTION

2.1 Site Identification

The details for the port site are outlined in Table 1 below.

Council	District Council of Tumby Bay						
Allotment Number	386	388					
Zone	General farming	Coastal					
Plan Details	CL 1132 26, Plan H511600, Parcel S386	CL 1132 26, Plan H511600, Parcel S388					
Current Owner	R. D. Rogers	R. D. Rogers					
Plan Area of Site (approx)	52.96 ha	51.09 ha					

Table 1: Sheep Hill Site Information

2.2 Current Site Description and Land Use

The port site is located within a predominantly rural area. Lipson Island Conservation Park is located approximately 1.5 km to the south of the site and a Crown Land coastal corridor, approximately 50 m wide, extends along the eastern boundary of the port site.

The port site is approximately trapezoidal in shape and is currently agricultural land. A fenceline runs approximately north-south through the site, designating the boundary of Allotments 386 and 388. The northern coastal portion of Allotment 388 consists of a small bay with sandy beach.

The potential road and rail transport access corridor generally follows the existing alignment of Swaffers Road from the intersection with the Lincoln Highway and passes through agricultural land to the south of the road reserve.

An aerial photograph showing surrounding land uses is provided as Figure 2.

2.3 Geology

The Lincoln mapsheet¹ indicates that the proposed port site and transport corridor is underlain by Archean age "Undifferentiated metasediments, coarse grained augen gneisses, granitoid gneisses, amphibolites, mica schists, sericite schists. Doleritic dykes abundant along eastern coast." This description of the site geology is consistent with the Tumby² and Neill³ mapsheets.

Based on discussions with Wolfgang Preiss (PIRSA), we understand that the site is located in the Kalinjala Shear Zone. This is a large-scale crustal structure on the Eyre Peninsula which separates the Donington Suite granites to the east from metasedimentary schist, quartzite, dolomite marble and banded iron formations of the Hutchison Group to the west.

The rocks beneath the site and exposed at the nearby beach are granite, granitic gneiss (deformed and metamorphosed granite), and schist (extremely deformed sheared granite). The granites and gneiss are likely to belong to the Donington Suite. These were intruded in a long belt along the east coast of the Eyre

¹ Johns et al, Scale 1:250,000, Geological Survey of South Australia (1958)

² Johns R. K., Scale 1:63,360, Geological Survey of South Australia (1958)

³ John & Thatcher, Scale 1:63,360, Geological Survey of South Australia (1958)

Peninsula, under the southern Spencer Gulf and outcrop also at the foot of the Yorke Peninsula. The schists may represent a subsidiary shear zone, possibly splintering off the main shear zone.

2.4 Topography

The site is flanked to the north, west and south by rounded hills approximately 50 m in elevation. The coastline to the north of the port site consists of a small bay with a sandy beach. The aerial photograph of the site (Figure 3A) shows an intertidal zone to the west of the small bay in the northern part of the site.

The western portion of the site slopes down gently towards an unsealed access track extending approximately north-south along the eastern allotment boundary. The headland on which the proposed port will be constructed rises from the track to approximately 25 m elevation. The headland is characterised by rocky outcrops. To the east it slopes steeply to a rocky shoreline.

The aerial photograph also shows a surface water drainage path extending from the south west of the site and curving towards the centre of the site where it becomes less well defined.

In the proposed Transport Access Corridor, Swaffers Road rises from its eastern end along a valley until it reaches a high point at the Coast Road intersection. Between Coast Road and the Lincoln Highway, Swaffers Road gradually falls through a series of hills and valleys. A surface water drainage path was present along one section of Swaffers Road near the eastern end of the road.

Two areas along Swaffers Road were identified as natural water collection areas (although these were dry at the time of the investigation) by the greener vegetation and surface salinity. One of these was located 1 km west of Coast Road and the other was located at the Swaffers Road – Lincoln Highway intersection, to the north of Swaffers Road.

2.5 Bore Search

A search of Primary Industry and Resources South Australia (PIRSA)'s Drillhole Enquiry System (DES)⁴, for registered bores in the vicinity of the site was undertaken. Search results for bores located within an 8 km radius of the port site are summarised in Table 2 below. Additional information is presented in Appendix A.

PIRSA Bore No.	Approx. Distance from Site (m)	Direction from Site	Drilled Depth (m)	Depth to Standing Water Level (m)	TDS (mg/L)	Sample Date
6129-15	3,300	Ν	-	-	9,725	June 1948
6129-29	2,400	WNW	-	-	-	-
6129-30	1,500	W	-	2.7	18,864	June 1948
6129-31	2,200	WNW	-	-	-	-
6129-92	7,300	WSW	-	2.7	13,852	June 1948
6129-93	6,200	WSW	-	1.8	15,180	June 1948
6129-94	2,200	W	-	-	12,295	May 1938

 Table 2: Shallow Groundwater Bore Information

⁴ PIRSA's online Drillhole Enquiry System [https://des.pir.sa.gov.au/deshome.html], accessed 29 July 2008

6129-95	2,700	SSW	-	6.1	10,510	January 1960
6129-96	4,900	SW	16.76	-	-	-
6129-97	4,200	SW	11.28	-	10,353	August 1948
6129-98	3,300	SSW	18.59	14	10,210	August 1948
6129-507	4,900	WNW	-	-	31,597	July 1992

The PIRSA data suggests that the wells in the vicinity on the site are generally greater than 50 years old. Recorded standing water levels of the uppermost aquifer for these bores range between 1.8 m and 14 m below the ground surface. The PIRSA data also indicates that total dissolved solids (TDS) concentrations within the uppermost aquifer and close to the site are generally greater that about 10,000 mg/L. These concentrations indicate brackish to saline water and therefore likely uses of groundwater may be limited.

Golder undertook a groundwater bore reconnaissance survey of these wells in consultation with the current landowners. This survey indicated that the wells listed above have either been decommissioned, are no longer operational or their location is unknown. We understand that the reasons for abandoning these bores include poor groundwater quality and the introduction of a piped water supply to the area.

3.0 SCOPE OF WORKS AND METHODOLOGY

3.1 Soil Investigation

The preliminary soil investigation was conducted by Golder during October and November 2008. The investigation included the sampling of soil recovered from boreholes and test pits and the collection of surface grab samples.

The site investigations and laboratory analyses were performed in accordance with Golder's procedures, which are based on the National Environmental Protection Council's *National Environmental Protection (Assessment of Site Contamination) Measure'* (1999) and Standards Australia, AS 4482.1 and AS 4482.2 – *'Guide to sampling and investigation of potentially contaminated soils'*, Parts 1 – 3.

3.1.1 Sampling Rationale and Methodology

A total of 24 test pits (TP01 to TP24) were excavated across the port site during the soil investigation. Test pit locations were positioned systematically across the Site and were spaced to provide a reasonable geographical spread. In addition, soil samples were collected from eight boreholes drilled at the site for the purpose of groundwater monitoring well installation.

Eight test pits (TP25 to TP32) were excavated within the proposed transport access corridor. The test pits were excavated at approximately 1 km intervals along the alignment. Six grab samples (G01 to G06) were also collected from surface soils at locations approximately halfway between the test pits.

The test pit, borehole and grab sample locations were measured using a handheld GPS to WGS84 datum and are presented on Figures 3A and 3B.

The test pits were excavated using a backhoe to depths ranging from 0.6 m (TP23) to 2.4 m (TP19). The boreholes were drilled by Boart Longyear using a truck-mounted sonic drilling rig to depths ranging from 10.3 m (BH03) to 21.5 m (BH06) below ground level. Grab samples were collected from surface soils by filling the appropriate laboratory supplied jars directly from soil sampled from the site surface at each location.

Reports of the test pits and boreholes are presented in Appendix B, together with Notes and Abbreviations used in their preparation.

A total of 180 samples (including 20 Quality Assurance/Quality Control (QA/QC) samples) were collected by environmental professionals from Golder. The sampling methodology included the following:

- Collection of soil samples from discrete depth intervals within each test pit and borehole, including the surface, near sub-surface and samples from each stratigraphic layer, where practicable.
- Samples were visually and olfactorily assessed for the presence of contamination.
- Soils encountered were environmentally logged.
- A Photoionisation Detector (PID) was used to assess the presence of volatile organic compounds within the soil.
- Soil samples selected for chemical analysis were submitted to either a primary or secondary National Association of Testing Authorities (NATA) registered laboratory in a chilled cool box with ice bricks under appropriate chain-of-custody (COC) documentation.

A discussion of QA/QC procedures adopted during the soil sampling program is presented in Section 4.0 and in Appendix C.

3.1.2 Chemical Analysis

Samples selected for laboratory analysis were analysed for one or more of the following analytes:

- pH value.
- Metals (aluminium, arsenic, cadmium, chromium, copper, iron, magnesium, mercury, nickel, lead and zinc).
- OCPs and OPPs.
- Total petroleum hydrocarbons (TPH)/benzene, toluene, ethylbenzenes and xylenes (BTEX).
- Polycyclic aromatic hydrocarbons (PAH).
- Chemicals contained in a comprehensive Vic EPA Screen.

The primary soil samples and intra-laboratory blind duplicate soil samples were analysed by SGS Environmental Services (SGS) and ALS Laboratory Group (ALS). The inter-laboratory split duplicate soil samples were analysed by LabMark Environmental Laboratories (LabMark). SGS, ALS and LabMark are NATA accredited for the tests performed.

3.1.3 Assessment Criteria

The results of the chemical analyses were compared with published Australian guidelines to assess the potential for contaminated soil to impact on the health of potential site users and environmental receptors and to assess off-site disposal options. The primary soil guidelines consulted were:

- National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (National Environment Protection Council 1999). The NEPM provides guidance for the investigation and management of site contamination, and provides health-based investigation levels (HILs) for soils in nominated settings (for example, standard residential [A], residential with minimum opportunities for soil access [D], and commercial / industrial [F]) and interim ecological investigation levels (EILs) for soils in an urban setting. The proposed future land use of the site is as a port. Accordingly, the NEPM NEPM HIL [F] (Commercial/Industrial) and the NEPM ecological investigation levels (NEPM EILs), were applied.
- Environment Protection (Fees and Levy) Regulations (1994), Schedule 6. This schedule provides limiting concentrations of chemical substances in soil for off-site disposal as 'Waste Fill'. Waste Fill is soil that can be disposed of to landfill without incurring a waste levy. For off site disposal purposes, material not complying with the Waste Fill disposal criteria would need to be considered against specific landfill licence conditions, including 'intermediate landfill cover (ILC)' or 'low level contaminated soil (LLCS)' criteria.

3.2 Groundwater Investigations

3.2.1 General

Monitoring wells were installed concurrently with the soil investigation (borehole drilling) program. A total of eight wells were installed to a maximum depth of 21.5 m. The well s were constructed to intersect the uppermost groundwater table either in fractured rock (G W01 to GW06) or in unconsolidated sediments (GW07 and GW08).

The locations of these wells are shown in Figure 4. Well details are listed in Table 3.

Permits to install monitoring wells were obtained from DWLBC prior to commencement of drilling. These permits are included in Appendix D. Reports of the boreholes are presented in Appendix B, with groundwater well construction details presented in Appendix E.

3.2.2 Installation Methods and Materials of Construction

The boreholes in which the shallow wells were installed were drilled using a sonic rig with core samples recovered during the drilling process. The wells were constructed from 6 m of 50 mm diameter slotted PVC screen finished to above the surface using blank threaded PVC casing. Each well had an end cap placed on the base on the slotted (screened) section and top of the well. The annulus of the borehole surrounding the screened section and approximately 1 m above the screened section was backfilled with sand to form a filter pack. An approximately 1 m thick layer of bentonite was placed above the filter pack and the remaining borehole annulus backfilled to the surface with cement grout. The well was completed with a lockable metal standpipe/monument cemented around it for protection of the well head and to minimise tampering.

The top of each well casing was professionally surveyed to Australian Height Datum (m AHD).

Monitoring Well	Easting (m)	Northing (m)	RL Top of Well Casing (m AHD)	Total Depth of Well (m bgl)	Screened Interval (m)	Depth to Top of Filter Pack (m)	Depth to Top of Bentonite Seal (m)	Completed With
GW 01	616712	6209958	9.107	13.5	7.3 -13.2	6.3	5.3	Concrete and standpipe cover
GW 02	616476	6209979	9.359	13.0	7.0 – 13.0	6.0	5.0	Concrete and standpipe cover
GW 03	616334	6209804	8.567	10.3	7.2 – 10.2	6.2	5.2	Concrete and standpipe cover
GW 04	616329	6209601	17.837	18.0	12.0 – 18.0	11.0	10.0	Concrete and standpipe cover
GW 05	616497	6209493	15.231	15.0	8.9 – 14.9	7.9	6.9	Concrete and standpipe cover
GW 06	616584	6209704	21.004	21.5	15.4 – 21.4	14.4	13.4	Concrete and standpipe cover
GW 07	616089	6210042	7.913	11.0	5.0 – 11.0	4.0	3.0	Concrete and standpipe cover
GW 08	615963	6209706	10.451	11.0	5.0 – 11.0	4.0	3.0	Concrete and standpipe cover

Table 3: Groundwater Monitoring Wells

The wells were developed about 7 days after installation using a low-voltage purging pump for a total of approximately 30 minutes until the water became clear. Field measurements of groundwater chemistry were taken at regular intervals during development (measuring conductivity, RedOx, dissolved oxygen, pH and temperature) and are presented in Appendix F.

3.2.3 Sampling

Groundwater was sampled on 5 November 2008 by an environmental professional from Golder. Groundwater sampling procedures included the following:

- The groundwater level was measured using an interface probe prior to removal of any water from the well.
- The well was purged using a 12V electric submersible pump and LDPE tubing. Field measurements of groundwater chemistry were taken approximately every 10 litres during purging. Purging of groundwater continued until a volume of water, equivalent to at least twice the well storage, had been removed and the variation of pH and conductivity parameters had stabilised to the extent that consecutive water chemistry measurements were within <u>+</u> 10% of each other. Purging was conducted so that a water sample representative of the surrounding aquifer could be obtained. For GW06, only one well-volume water could be purged prior to the water level reaching the base of the borehole.
- Field groundwater chemistry parameters (pH, RedOx, conductivity, dissolved oxygen and temperature) were measured using a TDS 90FLMV water quality meter during purging. The results of the field groundwater parameter testing are provided in the purging records contained in Appendix F.
- Samples were collected in containers provided by a NATA accredited analytical testing laboratory (ALS and LabMark). The samples to be analysed for metals were field filtered using a 0.45 micron filter.
- The sample bottles were placed in a cool box, stored on ice to keep chilled and delivered to the laboratory accompanied by the appropriate COC documentation.
- A blind duplicate (intra-laboratory) sample and a split duplicate (inter-laboratory) sample was collected from GW04.

Additional details regarding decontamination and quality control procedures used during the groundwater investigation are presented in the QA/QC discussion presented in Appendix C. Analytical results for the QA/QC samples collected during the investigation are also provided in Appendix C.

3.2.4 Chemical Analysis

The primary samples were analysed for the following analytes:

- pH value.
- Total Dissolved Solids (TDS).
- Major cations and anions.
- Chemicals contained in a comprehensive Vic EPA Screen.
- Additional metals (iron, magnesium, manganese).

The duplicate sample collected from GW04 was analysed for pH value, TDS, major cations and anions, and metals (aluminium, arsenic, cadmium, chromium, copper, iron, magnesium, manganese, mercury, nickel, lead and zinc).

Primary groundwater samples were analysed by ALS. The inter-laboratory split-duplicate sample was analysed by LabMark. ALS and LabMark are both NATA accredited for the tests performed. Analytical

methods used by each of these laboratories and the reporting limits achieved during the investigation are kept on file if required.

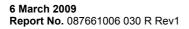
3.2.5 Assessment Criteria

The results of the chemical analyses were compared with published applicable guidelines to assess the potential for contaminated groundwater to impact on the health of potential site users and environmental receptors.

The SA EPA stipulates the use of Environment Protection (Water Quality) Policy 2003 for assessing water quality. In the absence chemical criteria in this Policy, the SA EPA does not formally endorse the use of regulations or policy from other States or countries. The presence of chemical contaminants, however, cannot be ignored based on the absence of guidelines. Therefore the use of other guidelines is considered appropriate.

The primary water guidelines consulted included:

Environment Protection (Water Quality) Policy 2003 [EPP(WQ)]. The EPP(WQ) operates as a policy under the Environment Protection Act, 1993 (Reference 4). The EPP(WQ) assigns default "protected environmental values" for all water bodies, including groundwater, and provides "water quality criteria" for the protected values.


In the absence of guidance criteria in the above document for TPH, the *Dutch Intervention Guidelines, 2000* (Reference 5) were used.

The protected environmental values are beneficial aspects or uses of water for protection of the water body from pollution. For underground water bodies (groundwater), the EPP (WQ) designates the protected environmental values as fresh or marine aquatic ecosystems, recreational – primary contact (e.g. swimming), aesthetic (colour, smell, clarity and general appearance), potable, agricultural irrigation, livestock watering, aquaculture and industrial use. The protected environmental values are assigned irrespective of the salinity of the water or the proximity/presence of environmental receptors.

Given the likely future land use of the site (commercial/industrial), the generally low groundwater yields and the site setting, (adjacent to Spencer Gulf), the most applicable criteria provided in the EPP(WQ) is considered to be for the protection of *marine aquatic ecosystems*.

The salinity of groundwater under the site ranges from 786 mg/L to 19,500 mg/L, which is higher than the maximum concentration suitable for drinking purposes (of 1,000 mg/L). On this basis, beneficial use of groundwater for drinking (potable and stock) and irrigation usage (EPP (WQ)) is unlikely.

The guideline concentrations are listed in the summary table of analytical results presented in Appendix G.

4.0 QUALITY ASSURANCE / QUALITY CONTROL

The QA/QC procedures undertaken by Golder personnel as part of the soil and groundwater investigations were based on our standard procedures, guidance provided in AS 4482.1 and the NEPM for the Assessment of Site Contamination.

Based on a review of the overall data, the results of the QA/QC analysis indicate that the primary data set for the soil assessment is acceptable.

A more detailed explanation of the QA/QC information is provided in Appendix C.

5.0 SUMMARY OF ASSESSMENT RESULTS

5.1 Soil Investigation

Reports of the test pits and boreholes are presented in Appendix B, together with Notes and Abbreviations used in their preparation. The laboratory certificates are available on file if required. Tables summarising the soil analytical data are included as Appendix H.

5.1.1 Summary of Subsurface Conditions – Port Site

Based on our investigations, the port site may be separated into three zones, each with distinct geotechnical characteristics. The zones are shown in the figure below.

The boundaries between the zones cannot be interpreted accurately on the basis of the relatively few widely spaced test pits and boreholes placed during the investigation and hence the interzone boundaries shown on the Figure 3A must be regarded as approximate only.

Descriptions of the subsurface conditions for the site zones are presented below.

Zone A

Zone A included Test Pits TP01 to TP04, TP06 to TP09 and Boreholes BH07 and BH08. These were located within the same cadastral boundary - the paddocks on the western half of the site, although Test Pit TP06 was to the east of that boundary. The aerial photo suggests that TP06 is in a surface water drainage path.

The soil profile in Zone A generally included topsoil - dark brown clayey sand or silty sand - to depths between 0.05 m and 0.15 m. Underlying the topsoil was dark red/brown medium to high plasticity sandy clay, present to depths between 0.1 m and 0.3 m. Below this we encountered brown/orange brown clayey sand or gravelly clayey sand to the base of the test pits between 1.9 m and 2.3 m below ground level. TP07

and TP08 encountered layers of calcrete gravel, cobbles or boulders in a matrix of clayey sand or sandy clay.

BH07 contained pale brown clayey sand, sand and sandy clay layers to 8 m depth. BH08 generally contained red brown high plasticity sandy clay or clay to 8 m depth. Below 8m depth in both boreholes we encountered yellow low plasticity silty sandy clay. This persisted to 11 m (termination) in BH07 and 9.5 m in BH08. Granite was present in BH08 from 9.5 m to the end of the borehole at 11 m.

Groundwater was not encountered in the test pits in Zone A. Groundwater levels in Boreholes BH07 and BH08 were around 6.6 m and 9.2 m below ground level (approximately 1.1 m AHD and 1.3 m AHD respectively).

Zone B

This is the low-lying intertidal zone in the north-east area of the site. Test pits TP05 and TP19 were located in Zone B.

The upper layers of TP05 and TP19 were dissimilar. TP05 encountered orange brown then dark brown low plasticity sandy clay to 0.6 m depth, underlain by pale grey/brown silty sand to 0.9 m depth. TP19 encountered orange brown sand to 0.7 m depth, underlain by orange brown sandy clay/clayey sand (high plasticity clay and fine to medium grained sand) to 1.5 m depth.

Beneath that the underlying materials were similar in both pits - high plasticity clay to between 1.6 m and 2.0 m depth underlain by grey clayey sand or silty sand to the base of the pits at 2.0 m and 2.4 m depth. In TP05 the high plasticity clay was striped grey, brown and white in layers, and the underlying sand layer collapsed during excavation. Excavation resistance in TP05 and TP19 was low to medium for their full depth.

Groundwater seepage was observed in both test pits. The observed groundwater level in TP05 was 1.65 m below ground level 1 hour after excavation was complete and 2.0 m below ground level in TP19 20 minutes after excavation was complete.

Zone C

Zone C comprises the headlands on the eastern half of the site. Test Pits TP10 to TP18, TP20 to TP24 and Boreholes BH01 to BH06 are located in this Zone.

The test pits encountered one to three near-surface layers of dark brown low plasticity clayey sand up to 0.5 m depth. Underlying this we generally observed pale orange brown silty sand or clayey sand, often including layers of grey/brown extremely weathered rock. Gravel, cobbles and boulders of calcrete, gneiss, schist, quartz or other weathered rocks were present at various depths throughout the pits, and as outcropping and scattered rocks on the ground surface. Weathered rock intrusions into upper test pit layers were occasionally present. Most of the test pits in Zone C contained calcareous soils or inclusions.

Ten of the fourteen test pits in Zone C met practical refusal at depths between 0.6 m and 1.8 m. Test Pits TP11, TP13, TP14 and TP20 did not meet refusal and were terminated at depths between 1.9 m and 2.35 m in inferred weathered rock or brown gravelly sand (TP13).

The boreholes in Zone C encountered topsoil generally underlain by soil strength materials (extremely weathered rock) to depths between 1.0 m and 11.5 m. The extremely weathered rock was generally clayey sand, silty sand or gravelly sand and often contained cobbles. The boreholes indicate significant variability in the depth of weathering. We do not consider that there are sufficient boreholes across the site to allow reliable assessment of the contact between soil and rock across the site.

The soil was underlain by distinctly weathered to slightly weathered granite or schist to the base of the boreholes at between 10.3 m and 21.5 m below ground level. The granite in the boreholes was generally high to very high strength while the schist ranged from medium to very high strength.

Based on the core recovered from the boreholes and limited geological mapping of rock outcrops at the site we make the following comments regarding the rock:

- The average defect spacing in the recovered core generally ranged between about 100 mm and 300 mm. There were a number of highly fractured zones.
- The main defect sets included sub-vertical foliation generally dipping in either east-southeast or westnorthwest directions (dependent on dip angle) and sub-vertical cleavage. Occasional joint sets (approximately 45° to 65° dip) were observed in the recovered core. However, we were unable to assess their dip direction from the vertical boreholes drilled.

Groundwater was not encountered in the test pits in Zone C. Groundwater level measurements in boreholes BH01 to BH06 as part of the ESA were between approximately 0.9 m AHD (GW03) and 2.3 m AHD m (GW04 and GW06).

5.1.2 Summary of Subsurface Conditions – Transport Access Corridor

Test Pits TP01, TP03 and TP04 and Borehole BH07 were located at the eastern end of the transport access corridor. These test pits generally encountered clayey sand/sandy clay topsoil to between 0.15 and 0.3 m depth, underlain by orange/brown to brown clayey sand to the full extent of the pits - 1.9 to 2.3 m depth. BH07 contained pale brown clayey sand, sand and sandy clay to 8 m depth, underlain by yellow silty sandy clay of low plasticity to the base of the borehole at 11 m.

Test Pits TP25 to TP32 were located along the Transport Access Corridor (refer to Figure 3B), in numerical order from east to west:

- TP25 was located in a valley close to the base of a hill and encountered refusal on inferred calcrete at 0.9 m depth. We observed brown/dark brown clayey sand to 0.3 m depth, underlain by calcrete gravel and cobbles in a matrix of brown clayey sand.
- TP26 and TP27 were located in a valley. These pits contained brown or dark brown and fine to coarse grained clayey sand to 2 m depth. There were calcareous inclusions and pale brown or pale orange/white mottling from around 0.5 m to 1.5 m depth.
- TP28 was placed on a saddle, with the ground rising towards the north along Coast Road, and dropping in other directions. This pit encountered dark brown clayey sand to 0.4 m depth, underlain by pale brown gravelly clayey sand to 0.9 m depth. Beneath that there was red/white/yellow mottled silty sand to the base of the pit at 2.0 m.
- Test Pits TP29 to TP32 were located to the west of Coast Road in a series of hills and valleys. Pits TP29, TP31 and TP32 encountered practical refusal at between 1.1m and 1.6m. We observed topsoil up to 0.5 m depth in these pits. This was underlain by a mixture of gravel, cobbles and boulders (inferred to be calcrete, gneiss and sandstone) in a matrix of soil (clayey sandy gravel, clayey sand, gravelly clayey sand or sandy clay) in which we met refusal at various depths. TP30 encountered dark brown clayey sand to 0.4 m depth, underlain by low plasticity sandy clay to 2 m depth.

Groundwater was not encountered in the test pits at the time of the investigation.

5.1.3 Summary of Visual and Olfactory Contamination

An assessment of each sample was made in the field and involved ranking based on both odours and/or any visible evidence of contamination. Each soil sample recovered was given a rank according to Table 4 below.

Table 4: Environmental Ranking System for Soils

	Visible Contamination	Odorous Soil		
Rank	Description	Rank	Description	
0	No visible evidence of contamination	А	No odour	
1	Slight evidence of visual contamination (trace quantities)	В	Slightly offensive odour	
2	Visible contamination (e.g. more than trace)	С	Moderately offensive odour	
3	Obviously contaminated (e.g. significant colour and staining)	D	Strongly offensive odour	

No visible evidence of contamination was observed in the soil samples collected on site. Generally, the samples collected from the test pits and the boreholes recorded rankings of 0A.

As indicated in Section 3.1.1, the soil samples were screened with a PID to assess the potential presence of volatile organic hydrocarbons (measured in isobutylene equivalents). PID readings were 0.0 ppm in the screened samples, with the exception of:

- BH01 (0 to 0.2 m bgl) 0.4 ppm.
- BH01 (0.4 to 0.5 m bgl) 0.2 ppm.
- BH01 (1.5 to 1.8 m bgl) 0.1 ppm

These PID readings are low. The soil samples from which the above readings were made did not have a visual appearance or odour which suggested the presence of organic contamination.

5.1.4 Summary of Analytical Results

The results of the laboratory analytical testing for the limited soil investigation conducted by Golder have been compared with the adopted assessment criteria outlined in Section 3.1.3.

Laboratory analytical results reported for soil samples are summarised below:

- Concentrations of metals were generally below the adopted assessment criteria with the following exceptions:
 - Zinc concentrations in three samples (BH08 0 to 0.2 m, BH08 1.5 to 1.8 m, and TP31 0 to 0.1 m) exceeded the NEPM EIL guideline and Waste Fill disposal criteria of 200 mg/kg.
 - Vanadium concentrations in four samples (TP02 0.15 to 0.3 m, TP0 0.3 to 0.6 m, TP11 0.05 to 0.2 m, and TP17 0 to 0.2 m) exceeded the NEPM EIL guideline of 50 mg/kg.
 - Copper concentrations in 21 samples exceeded the Waste Fill disposal criteria of 60 mg/kg. Of these samples, eight exceeded the NEPM EIL guideline of 100 mg/kg.

- For the samples analysed, aluminium concentrations ranged from 2,500 to 33,900 mg/kg, iron concentrations ranged from 3,800 to 58,200 mg/kg, and magnesium concentrations ranged from 760 to 36,600 mg/kg.
- pH measurement ranged from 6.5 to 10.3 pH units.
- TPH (both C₆-C₉ and C₁₀-C₃₆) were generally below the laboratory limit of reporting (LOR) with the exception of one sample from BH08 (0 to 0.2 m). The concentration of C₁₀-C₃₆ was measured to be 2,000 mg/kg, exceeding the Waste Fill disposal criteria of 1,000 mg/kg. This did not correspond to measured PID readings.
- BTEX concentrations were below the laboratory LOR.
- BaP and total PAH concentrations were below the laboratory LOR.
- OCP, OPP, VOC, PCB, phenols, cyanide and fluoride concentrations were below the adopted assessment criteria or below the laboratory LOR.
- The 95% Upper Confidence Limits (UCLs) of mean analyte concentrations were below the assessment criteria, NEPM EIL guideline and Waste Fill disposal criteria.
- All analyte concentrations were below the NEPM HIL[F] guideline for commercial/industrial landuse.

Exceedences of the assessment criteria are highlighted in the results summary table provided in Appendix H.

5.2 Groundwater Investigation

5.2.1 Groundwater Levels

A summary of the groundwater level measurements for GW01 to GW08 are presented in Table 5 below.

Monitoring Well	Easting (m)	Northing (m)	RL Top of Well	Groundwater Level (m AHD)	Groundwater Level (m AHD)
			Casing (m AHD)	Before Development	Before Sampling
				30 October 2008	5 November 2008
GW 01	616712	6209958	9.107	1.766	1.626
GW 02	616476	6209979	9.359	1.225	1.207
GW 03	616334	6209804	8.567	0.924	0.886
GW 04	616329	6209601	17.837	2.323	2.27
GW 05	616497	6209493	15.231	11.719	1.747
GW 06	616584	6209704	21.004	2.448	2.299
GW 07	616089	6210042	7.913	1.342	1.099
GW 08	615963	6209706	10.451	1.945	1.282

Table 5: Summary of Groundwater Levels

5.2.2 Groundwater Field Measurements and Observations

Details of sampling procedures and field water chemistry measurements for the groundwater monitoring wells are outlined in the groundwater sampling records contained in Appendix F.

A summary of the field water chemistry measurements for GW01 to GW08 are presented in Table 6 below.

Monitoring Well	Date Sampled	Temp (°C)	DO (mg/L)	рН	Cond. (mS/cm)	Redox (mV)
GW 01	05/11/08	25.8	11.82	9.39	3.07	84
GW 02	05/11/08	26.8	3.26	7.71	8.61	175
GW 03	05/11/08	26.1	1.01	6.45	20.10	163
GW 04	05/11/08	26.7	1.63	7.84	4.31	152
GW 05	05/11/08	27.1	3.39	8.09	1.37	153
GW 06	05/11/08	27.7	3.02	7.47	22.9	183
GW 07	05/11/08	26.4	3.08	7.27	18.57	175
GW 08	05/11/08	26.8	2.24	7.38	13.03	165

Table 6: Summary of Groundwater Field Measurements

The field conductivity values ranged from 1.37 mS/cm to 20.10 mS/cm which correspond to a TDS range of approximately 900 mg/L to 12,900 mg/L. These values are within the expected TDS range indicated by the PIRSA data (Table 2).

The dissolved oxygen and Redox values for GW02 to GW07 suggest generally oxidising conditions while the anomalous values measured for GW01 may be the result of an equipment malfunction or the particularly high pH has influenced the chemistry.

5.2.3 Summary of Analytical Results

A summary table presenting the results of groundwater sampling and the adopted assessment criteria is provided in Appendix G. The laboratory certificates and COCs are available on file if required.

A discussion of the sampling results with respect to the adopted assessment criteria is presented below.

6.0 **DISCUSSION**

6.1 Summary of Investigations

Golder has undertaken a limited environmental site assessment for the proposed port site and transport access corridor. This work was conducted for the purpose of obtaining baseline chemical information to assess pre-existing soil and groundwater conditions at the site to allow a comparison of the existing contaminant levels (if present) with those present in the soils and groundwater when Centrex cease operations and exit the land.

The assessment included an investigation of historic site activities and limited soil and groundwater investigations to assess potential contamination of the Site as a result of the historic activities.

The site history investigation indicated that the Site was previously used for agricultural activities. During a site walkover, several features of environmental interest were noted on the Site, including a number of stockpiles of large rocks and fence lines that may have been sprayed for weed control purposes.

Intrusive soil and groundwater investigations were spaced across the Site to provide an appropriate geographical spread of assessment locations.

6.2 Limited Soil Assessment

Results of the soil assessment indicated that chemical concentrations were generally below the laboratory LOR or below the adopted investigation criteria for disposal and for the protection of human health and ecological receptors. There were samples with concentrations of copper, zinc, vanadium and TPH exceeding the NEPM EIL guideline and Waste Fill disposal criteria. However, sample concentrations were below the NEPM HIL[F] guideline for commercial/industrial landuse and the 95% Upper Confidence Limits (UCLs) of mean analyte concentrations were below the NEPM EIL guideline and Waste Fill disposal criteria.

In Golder's experience, the soils of the Adelaide Plains and the Yorke and Eyre Peninsulas contain vanadium consistent with the concentrations reported in the samples collected.

The zinc in the surface sample of BH08 corresponds to the TPH concentrations discussed below. The samples also contains above average concentrations of many other metals.

The copper concentrations reported in the samples appear to represent typical regional geological characteristics. Copper concentrations exceeding the guidelines and criteria are associated with the upper weathered rock layers in Zone C.

The TPH C_{10} - C_{36} concentration of 2,000 mg/kg, measured in the surface sample recovered from BH08, may be associated with possible spillage of lubricants from the drilling rig or support vehicles used during the investigations. However, the PID reading for this sample was 0.0 ppm and no odours or visible evidence of contamination was observed. The association of the TPH with many metals indicates that it is likely to have been introduced by general activities in the area. It possibly represents one of many low-level impacts on the site.

The measured pH values ranged from 6.5 to 10.3. pH values above 9.0 are considered to be elevated and alkaline. However, the measurements for samples recovered from the port site and transport corridor are likely to be regionally influenced, with elevated measurements attributable to the prevalence of calcareous formations in the area. In our experience, this is typical of the Eyre Peninsula.

6.3 Limited Groundwater Assessment

Groundwater investigations (Section 5.2) included the drilling and installation of eight groundwater wells, the measurement of standing water levels and analysis of groundwater quality. A sea rch of regional bore records (<u>https://info.pir.sa.gov.au/des/desHome.html</u>) and a subsequent reconnaissance survey have provided little information. Therefore the groundwater assessment was completed on the basis of the drillhole information and Golder's experience with similar hydrogeological settings.

6.3.1 Hydrostratigraphy

A single, multi-lithology (different rocks contain the groundwater) aquifer is inferred beneath the site. Groundwater is hosted in this aquifer just above mean sea level (<3 m AHD) in either fractured rocks (GW01 to GW06) or unconsolidated sediments (GW07 and GW08). The unconsolidated sediments above the fractured rocks (granite, gneiss or schist) are either a thin (few metres thick) veneer of extremely weathered rock or recent unconsolidated sediments (GW07 and GW08) approximately 10 m thick.

We interpret this upper most aquifer to be uncoinfined and potentially the receiving environment for contaminants released to the land sulface or just below. Although there is no data available on deeper groundwater, it is likely that negligible freshwater is stored in the deeper, less fractured parts of the granitic rocks. This is because the less fractured rock is expected to store less water and the limited (<3 m AHD) freshwater head implies a freshwater-saline interface above about -150 m AHD.

6.3.2 Lateral Groundwater Flow

Figure 5 shows measured groundwater elevations in the groundwater wells (in m AHD) and our interpretation of groundwater head contours. For the purpose of this map, the groundwater elevation was assumed to be \sim 0 m AHD at the coastline.

Assuming the groundwater system is isotropic, lateral groundwater movement would be perpendicular to the contours. Groundwater appears to move from a ridge (roughly following a line between GW01 to GW06) towards the east (sea), north (sandy beach to the north of the site) and west/northwest. The northwesterly flow appears to be the most significant as it connects the fractured rock environment to the sedimentary deposits. The fractured rock contains the groundwater beneath GW01 to GW06; the sediments were encountered in GW07 and GW08 and on the surface adjoining a drainage feature that terminates in a deltaic dampland. At present the dampland is separated from the sea by a sandy beach. The dampland appears to be the most likely receptor of surface water and the majority of groundwater flows. The dampland was probably an outlet to the sea under more humid conditions.

6.3.3 Groundwater Recharge

Bureau of Meteorology data indicates that mean annual rainfall for the area is just below 500 mm and that mean annual evaporation is likely to be about 1,500 mm.

Recharge to groundwater is expected to occur almost exclusively in winter because that is when most rains fall (between April and October) and temperatures (and hence evaporation) are lower. The hot and mostly dry summer, between the months of November to February, is characterised by large evaporation losses from surface water and groundwater close to the surface.

Over 80 Australian groundwater recharge studies were reviewed by Petheram *et al* (2000). These studies estimated recharge for annual rainfalls between 100 and 1150 mm/yr, various soil and land use types, including many South and Western Australian studies in winter-dominated rainfall areas.

In general, Petheram *et al* (2000) suggest groundwater recharge was found, at around 500 mm/year rainfall, to be up to 75 mm/year. Using a recharge range of 25 to 75 mm/year and assuming a porosity of 5% for the fractured rock, we would expect an annual fluctuation of about 1.5 m in groundwater levels in GW01 to GW06. Assuming 5% to 15% porosity for the unconsolidated sediments observed in GW07 and GW08 the annual fluctuation in these bores is expected to be less than 0.5 m.

6.3.4 Groundwater Discharge

Shallow groundwater is expected to be generally parallel to the land surface and drainage features. In general groundwater in an unconfined aquifer is therefore expected to discharge to either surface water or to the sea. Local groundwater is interpreted to discharge to the east to the sea or towards the dampland to the north (Section 6.3.2). During the site inspection and works in a dry October/November 2008 no seepage face could be observed at the beach or at the dampland.

6.4 Groundwater Quality

Groundwater investigations included the sampling and analyses of groundwater quality.

6.4.1 Salinity

Concentrations reported by PIRSA in Table 2 indicated brackish to saline water regionally. The salinity, as measured by total dissolved solids (TDS, in mg/L) is presented in Figure 4. TDS ranges between the high hundreds (786 mg/L at GW05, 'freshwater') to brackish/saline water (maximum 19,500 mg/L at GW07). Considering the climate and expected low groundwater recharge, the presence of freshwater in GW05 was unexpected.

The pattern of salinity is 'normally' expected to follow the groundwater flow path in an unconfined aquifer. Salinity, in general, is expected to be low near recharge areas (where rain or surface water enters the aquifer). Salinity is expected to increase along the path. As Figure 4 indicates, salinity is low (< 1,000 mg/L) in GW05, moderate (1,000 mg/L to 10,000 mg/L) in GW01, GW02 and GW04; and high (>10,000 mg/L) in GW03, GW06, GW07 and GW08. This pattern generally follows the expectation: low salinity in GW05 and GW01; and high salinity in GW03, GW07 and GW08. The reported high salinity in GW06 is, however, a surprise as this bore is situated close to the ridge of the headland and therefore a low salinity was anticipated.

6.4.2 Ionic Composition

All the reported groundwater samples are of sodium-chloride type (sodium being the major cation and chloride the dominant anion). Sodium-chloride type groundwater is typical to coastal groundwater discharge areas.

The reported pH values are between 6.85 and 9.52 with a median of 7.85. The pH of GW01, 9.52 is above SA EPA EPP livestock, potable and aquatic freshwater guidelines. This is typical of the calcareous nature of the region.

Of the reported anions, fluoride exceeded the SA EPA EPP Irrigation (GW01, GW02, GW03, GW07 and GW08); Livestock (GW01, GW02 and GW07); and potable (GW01, GW02, GW03, GW07 and GW08) guidelines. Reported sulphate concentrations were above the SA EPA EPP Potable guidelines in GW02, GW03, GW06, GW07 and GW08; and above the SA EPA EPP livestock guidelines in GW03, GW06, GW07 and GW08.

6.4.3 Dissolved Metals

Dissolved metals exceeding SA EPA EPP(WQ) include:

- 0.0002 mg/L mercury in GW04 above SA EPA EPP Aquatic Fresh and Marine Guidelines,
- 0.0002 mg/L cadmium in GW08 above SA EPA EPP Potable, Aquatic Fresh and Marine Guidelines,
- 0.1 to 0.8 mg/ L manganese in GW02, GW03, GW04 and GW06 above SA EPA EPP Aquaculture Guidelines,
- 0.034 and 0.06 mg/L (GW01 and GW05) molybdenum above SA EPA EPP Livestock Guidelines,
- 0.036 to 0.044 mg/L selenium (GW02, GW04, GW07 and GW08) above SA EPA EPP Irrigation, Livestock and Potable Guidelines,
- 0.157 mg/L mg/L selenium (GW01) above SA EPA EPP Aquaculture, Irrigation, Livestock, Potable and Aquatic Fresh and Marine Guidelines,
- 0.05 to 0.385 mg/L zinc (GW02, GW02, GW04, GW06, GW07 and GW08) above SA EPA EPP Aquatic Fresh and Marine Guidelines,

- 0.06 (GW01) and 0.021 mg/L (GW06) zinc above SA EPA EPP Aquaculture Guidelines; and
- 0.05 to 0.06 mg/L silver (GW03, GW07 and GW08) above SA EPA EPP Fresh and Marine Guidelines.

6.4.4 Pesticides and Hydrocarbons

Organochlorine pesticides, organophosphorus pesticides, phenolic compounds, polynuclear aromatic hydrocarbons, chlorinated hydrocarbons, total petroleum hydrocarbons, BTEX, fumigants, halogenated aliphatic compounds, halogenated aromatic compounds, trihalomethanes were below their respective limits for reporting.

6.4.5 Summary of Groundwater Quality

Metal exceedences occur in all bores (but no bore exceeds systemically the metal guidelines) and in an unpredictable pattern. Considering the current land use and the general lack of potential contaminants, the most likely explanation is that the metals listed in Section 6.4.3 occur naturally and are the product of groundwater–metamorphised rock interaction.

7.0 REFERENCES

- Petheram, C., Zhang, L., Walker, G., Grayson, R., (2000). 'Towards a framework for predicting impacts of Land-use on Recharge: A Review of recharge studies in Australia'. CSIRO Land and Water Technical report 28/00.
- 2) NEPC (1999). *'National Environment Protection (Assessment of Site Contamination) Measure'*. National Environment Protection Council, December 1999.
- 3) NSW Environmental Protection Authority (1994). 'Guidelines for Assessing Service Station Sites', December 1994.
- 4) EPP (WQ) (2003). 'Schedule 2, Water Quality Criteria', February 2003.
- 5) The Netherlands Ministry of Housing (2000). *'Spatial Planning and Environment's Circular on Target Values and Intervention Values '*, February 2000.
- 6) Standards Australia (2005). 'AS4482.1 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil', Part 1: Non-Volatile and Semi-Volatile Compounds'.

8.0 LIMITATIONS

Your attention is drawn to the document – "Limitations", which is attached to this report (Appendix I). The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this letter are aware of the responsibilities each assumes in so doing.

Report Signature Page

taker

Tom Hills Senior Geotechnical Engineer

Andrew Howes

Associate

THH&GB/AWH/hh

A.B.N. 64 006 107 857

i:\miningl2010\107661001 - centrex - port eia approvals - lipson\087661006 centrex sheep hill\correspondence out\087661006 030 r rev0 esa\087661001 030 r rev1\087661006 030 r rev1\0887661006 030 r rev1\0887661000 r rev1\08876610000

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Surrounding Land Use
- Figure 3A Investigation Location Plan (Test Pits TP01 to TP24 and Boreholes BH01 to BH08)
- Figure 3B Investigation Location Plan (Test Pits TP25 to TP32 and Surface Samples)
- Figure 4 Interpreted Total Dissolved Solids in Groundwater
- **Figure 5 Interpreted Groundwater Elevation**

CENTREX METALS LIMITED

SHEEP HILL MARINE PORT FACILITY DEVELOPMENT APPROVAL AND BASELINE STUDY

SITE LOCATION PLAN

Legend

Lands Title Cadastral Boundary

Lipson Island Conservation Park

Rogers Beach: Development Exclusion Zone

Sheep Hill Marine Port Site Study Area

Three Sisters Marine Wreck

Transport Corridor Study Area

COPYRIGHT

Aerial image sourced from Department for Environment and Heritage, 2007. Cadastral data sourced from Centrex Metals Limited, October 2008

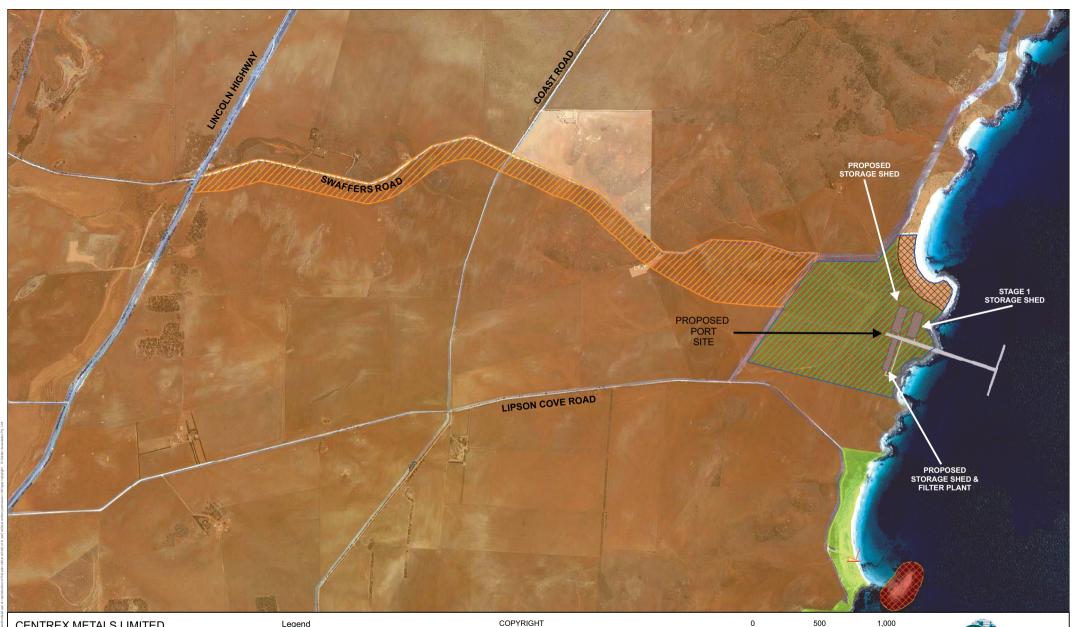
DISCLAIMER

"Golder Associates does not warrant the accuracy or completeness of information in the drawings and any person using or relying upon such information does so on the basis that Golder Associates shall bear no responsibility or liability for any errors, faults, defects or ommissions in the information".

500 1,000 Scale in metres

0

SCALE 1:20,000


199 FRANKLIN STREET PH (08) 8213 2100 ADELAIDE SA 5000 AUSTRALIA FAX (08) 8213 2101

DATUM GDA 1994 PROJECTION MGA Zone 53

Project:	087661006	Figure No:	F0001_Rev0	
Drawn:	KB	Date:	23.01.2009	_
Checked:	TH	Date:	23.01.2009	F

N

FIGURE 1

CENTREX METALS	LIMITED
----------------	---------

SHEEP HILL MARINE PORT FACILITY DEVELOPMENT APPROVAL AND BASELINE STUDY

SURROUNDING LAND USE

Legend

- Recreation Rural Residence
 - Vacant Land

Agriculture

- Lands Title Cadastral Boundary
- Lipson Island Conservation Park
- Rogers Beach: Development Exclusion Zone
- Sheep Hill Marine Port Site Study Area
- Transport Corridor Study Area
- Three Sisters Marine Wreck

COPYRIGHT

Aerial image sourced from Department for Environment and Heritage, 2007. Cadastral data sourced from Centrex Metals Limited, October 2008. Development zone data sourced from Planning SA, December 2008.

DISCLAIMER

"Golder Associates does not warrant the accuracy or completeness of information in the drawings and any person using or relying upon such information does so on the basis that Golder Associates shall bear no responsibility or liability for any errors, faults, defects or ommissions in the information".

500 Scale in metres

SCALE 1:20,000

KB

ΤH

Project:

Drawn:

Checked:

Ν

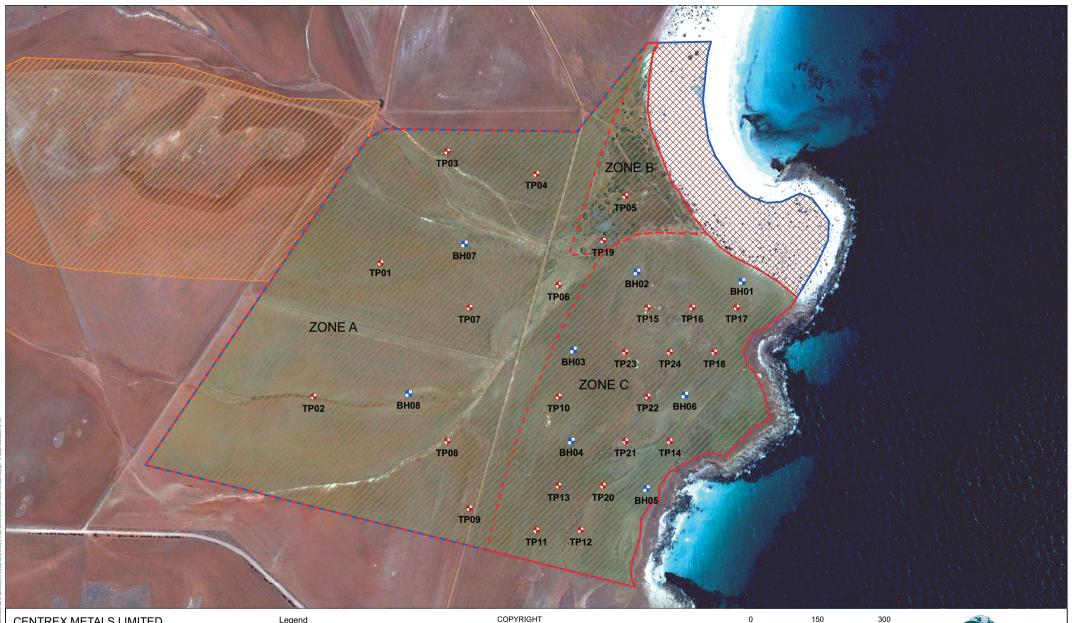
23.01.2009

23.01.2009

087661006 Figure No: F0002_Rev0

Date:

Date:



199 FRANKLIN STREET PH (08) 8213 2100 ADELAIDE SA 5000 AUSTRALIA FAX (08) 8213 2101

PROJECTION MGA Zone 53

F	IGl	JR	F	2

CENTREX METALS LIMITED

SHEEP HILL MARINE PORT FACILITY DEVELOPMENT APPROVAL AND BASELINE STUDY

INVESTIGATION LOCATION PLAN

Legend

÷ Borehole Location

- ٠ Test Pit Location Approximate Zone Boundry
- Lands Title Cadastral Boundary
- Rogers Beach: Development Exclusion Zone
- Sheep Hill Marine Port Site Study Area
- Transport Corridor Study Area

COPYRIGHT

Aerial image sourced from Department for Environment and Heritage, 2007. Cadastral data sourced from Centrex Metals Limited. October 2008.

DISCLAIMER

"Golder Associates does not warrant the accuracy or completeness of information in the drawings and any person using or relying upon such information does so on the basis that Golder Associates shall bear no responsibility or liability for any errors, faults, defects or ommissions in the information".

150 Scale in metres

SCALE 1:6,000

KB

ΤH

Project:

Drawn:

Checked:

199 FRANKLIN STREET PH (08) 8213 2100 ADELAIDE SA 5000 AUSTRALIA FAX (08) 8213 2101

Ν

23.01.2009

23.01.2009

087661006 Figure No: F0003A_Rev0

Date:

Date:

DATUM GDA 1994 PROJECTION MGA Zone 53

FIGURE 3A

CENTREX METALS LIMITED

SHEEP HILL MARINE PORT FACILITY DEVELOPMENT APPROVAL AND BASELINE STUDY

INVESTIGATION LOCATION PLAN

Legend

- Test Pit Location ٠
- Grab Sample Location
- Lands Title Cadastral Boundary
- Sheep Hill Marine Port Site Study Area

Transport Corridor Study Area

COPYRIGHT

Aerial image sourced from Department for Environment and Heritage, 2007. Cadastral data sourced from Centrex Metals Limited. October 2008.

DISCLAIMER

"Golder Associates does not warrant the accuracy or completeness of information in the drawings and any person using or relying upon such information does so on the basis that Golder Associates shall bear no responsibility or liability for any errors, faults, defects or ommissions in the information".

300 Scale in metres

SCALE 1:12,500

KB

ΤH

Project:

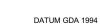
Drawn:

Checked:

Ν

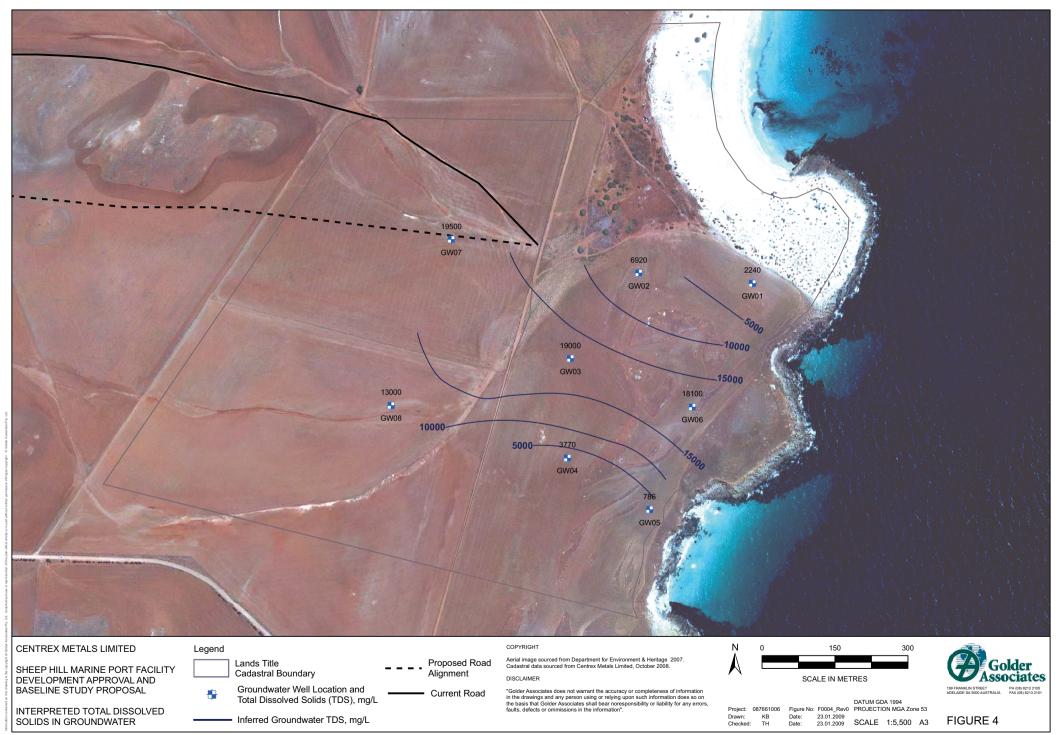
23.01.2009

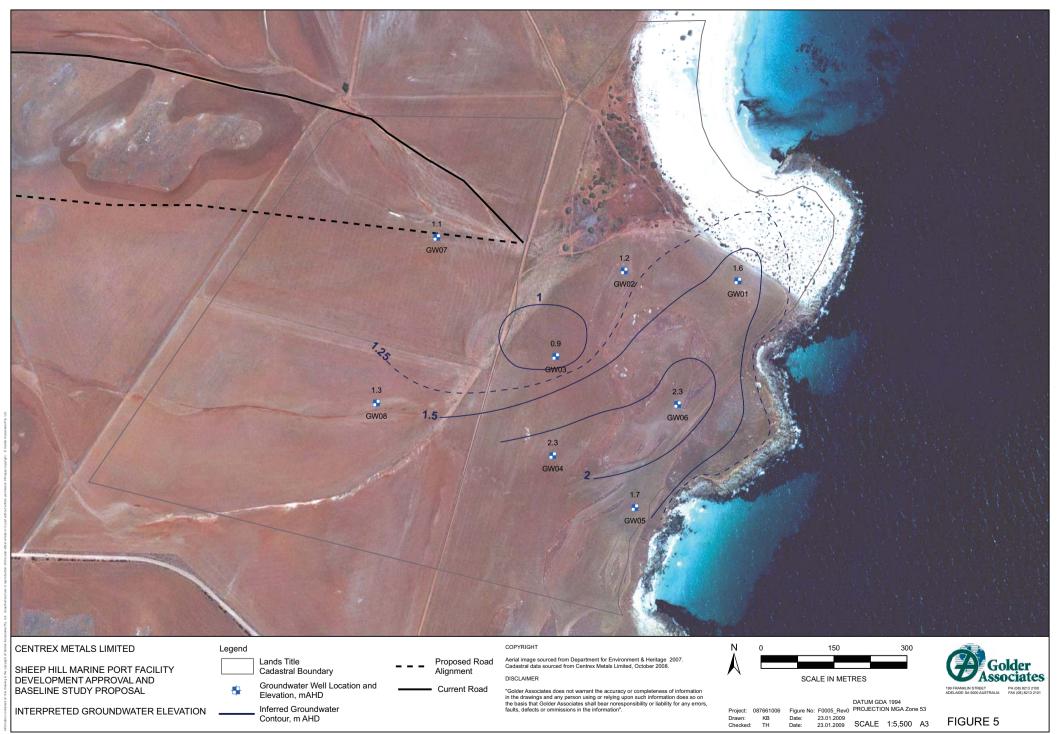
23.01.2009


087661006 Figure No: F0003B_Rev0

Date:

Date:




199 FRANKLIN STREET PH (08) 8213 2100 ADELAIDE SA 5000 AUSTRALIA FAX (08) 8213 2101

PROJECTION MGA Zone 53

F	IGL	IRE	3R

SHEEP HILL MARINE PORT FACILITY BASELINE STUDY

APPENDIX A DWLBC Information for Groundwater

JNKNOW

ETT

5144360

563,612900555

Map Projection: Not Projected UNKNOWN 612900015 BUTLER CENTRE 612900507 BERRYMAN'S SWAFFERS COWIENINT 612900031 612900030 Jan Stand 612900094 LIESON COVE 612900089 WARRATTA VALE 612900090

6/2900096

Department of Water, Land and Biodiversity Conservation (DWLBC) and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or

612900097

612900095

612900098

BERGS

812900093

612900092

612900313,612900306 612900091,612900314

> GIODEL2900548.612900573 612900549

612900508

Ν

Government of South Australia

Department of Water, Land and Biodiversity Conservation otherwise. The Department of Water, Land and Biodiversity Conservation and its employees expressly disclaim all liability or responsibility to any person using the information/advice.

APPENDIX A.2

Drillhole Summary *

Table A: Drillhole summary table for search results within 8km radius of the port site.

Unit_No	Obs No	drillhole name		orig drill depth	orig drill date	max drill depth		late open depth	late open date	late permit no	cased to	case min diam	purpose	late status late status date	SWL	RSWL	water level date	TDS			pН	pH date y	eld	yield date
6129-15		SPRING IN PONTO CREEK					12/06/1948	0	12/06/1948				STK					9725	16659	13/06/1948			_	
6129-29			ww			17	1/01/1940	16.76	1/01/1940					ABD										
6129-30			WW			3	12/06/1948	3.05	12/06/1948				STK	UKN	2.7		12/06/1948	18864	30764	12/06/1948				
6129-31			ww			15		15.24						ABD										
6129-89			WW		1/01/1938	16	1/12/1950	15.85	1/12/1950											1/01/1938				
6129-90			ww				27/05/1938	0	27/05/1938											1/05/1938				
6129-91			WW	5.79	16/11/1937	6	16/11/1937	5.79	16/11/1937											1/11/1937				
6129-92			ww			4	13/06/1948	3.66	13/06/1948						2.7		13/06/1948			13/06/1948				
6129-93			WW			2	13/06/1948	2.44	13/06/1948						1.8		13/06/1948			12/06/1948				
6129-94			WW			15		15.24						ABD						1/05/1938				
6129-95			ww			9	18/01/1960	9.14	18/01/1960						6.1		18/01/1960	10510	17939	18/01/1960				
6129-96			WW	16.76	12/11/1937	17	12/11/1937	16.76	12/11/1937															
6129-97			ww	11.28	27/10/1937	11	27/10/1937	11.28	27/10/1937											27/08/1948				27/10/1937
6129-98			WW	18.59	5/11/1937	19	5/11/1937	18.59	1/12/1950		12.19	127			14		1/12/1950			27/08/1948		(.25	1/12/1950
6129-103		CREEK					25/05/1948	0	25/05/1948									34015	51864	28/05/1948				
6129-306		XX50E	MW	20	24/02/1975	20	24/02/1975	20	24/02/1975				EXP											
6129-307		XX00	MW	14	25/02/1975	14	25/02/1975	14	25/02/1975				EXP											
6129-308		XX50W	MW	3	25/02/1975	3	25/02/1975	3	25/02/1975				EXP											
6129-309		XX60W	MW	3	25/02/1975	3	25/02/1975	3	25/02/1975				EXP											
6129-310		XX70W	MW	5	25/02/1975	5	25/02/1975	5	25/02/1975				EXP											
6129-311		XX80W	MW	3	25/02/1975	3	25/02/1975	3	25/02/1975				EXP											
6129-312		XX10W	MW	11	25/02/1975	11	25/02/1975	11	25/02/1975				EXP											
6129-313		XX20W	MW	7	25/02/1975	7	25/02/1975	7	25/02/1975				EXP											
6129-314		XX30W	MW	9	25/02/1975	9	25/02/1975	9	25/02/1975				EXP											
6129-315		XX40W	MW	5	25/02/1975	5	25/02/1975	5	25/02/1975				EXP											
6129-507		B279											DRN							15/07/1992		(.05	15/07/1992
6129-508		B280											RIV							15/07/1992				25/10/2001
6129-539																		16963	27900	18/10/1999			10	18/10/1999
6129-548		YARANYACKA DH1	MW	28.5	10/08/1987	29	10/08/1987	28.5	10/08/1987															
6129-549		YARANYACKA DH3	MW	30	10/08/1987	30	10/08/1987	30	10/08/1987															
6129-573		YARANYACKA DH2	MW	29.5		30		29.5																

Table A (cont.):	Drillhole summary	table for search result	s within 8km radi	us of the port :	site.																						
Unit_No	mga easting	mga northing	mga zone	long deg	long min	long sec	lat deg	lat min	lat sec	decimal long	decimal lat	neg decimal lat	hundred	plan	parcel	title reference ma	ap 250k	map 100k	map 50k	map 10k n	nap 2_5k	map 1k water in	nfo salir	nity water chemistry	geophys log	drill log	lith log
6129-15	616650.76	6213068.15	53	136	15	58.885	34	13	0.874	136.266357	34.2169094	-34.2169094	YARANYACKA	H511600	S322		SI5311	6129	1	23	f	2 N	Y	ΎΝ	N	N	N
6129-29	614066.88	6210808.06	53	136	14	18.998	34	14	15.266	136.2386107	34.2375738	-34.2375738	YARANYACKA	H511600	S422		SI5311	6129	4	23	q	2 N	N	I N	N	N	N
6129-30	614808.95	6210267.86	53	136	14	48.259	34	14	32.506	136.2467387	34.2423627	-34.2423627	YARANYACKA	F139690	A1		SI5311	6129	4	23	q	3 Y	Y	' N	N	N	N
6129-31	614301.96	6210635.17	53	136	14	28.268	34	14	20.784	136.2411857	34.2391068	-34.2391068	YARANYACKA	F139690	A1		SI5311	6129	4	23	q	2 N	N	I N	N	N	N
6129-89	607605.9	6208815.94	53	136	10	7.373	34	15	22.409	136.1687148	34.2562247	-34.2562247	YARANYACKA		S418		SI5311	6129	3	29	С	3 N	Y	' N	N	N	N
6129-90	607569.77	6208459.9	53	136	10	6.121	34	15	33.979	136.1683668	34.2594387	-34.2594387	YARANYACKA		S418		SI5311	6129	3	29	С	4 N	Y	' N	N	N	N
6129-91	607516.84	6207858.84	53	136	10	4.321	34	15	53.509	136.1678669	34.2648637	-34.2648637	YARANYACKA	H511600	S418		SI5311	6129	3	29	f	3 N	Y	' N	N	N	Y
6129-92	609022.87	6208214.88	53	136	11	3.04	34	15	41.388	136.1841777	34.2614966	-34.2614966	YARANYACKA	D24471	A5		SI5311	6129	3	29	d	5 Y	Y	' N	N	N	N
6129-93	610246.98	6207983.96	53	136	11	51.002	34	15	48.418	136.1975006	34.2634494	-34.2634494	YARANYACKA	H511600	S429		SI5311	6129	3	29	e	3 Y	Y	' N	N	N	N
6129-94	614075.78	6209372.9	53	136	14	20.029	34	15	1.846	136.2388969	34.2505129	-34.2505129	YARANYACKA		S422		SI5311	6129	3	28	b	2 N	Y	Ś N	N	N	N
6129-95	615028.72	6207436.98	53	136	14	58.207	34	16	4.306	136.249502	34.2678629	-34.2678629	YARANYACKA	D28246	A7		SI5311	6129	3	28	g	3 Y	Y	' N	N	N	N
6129-96	612764.87	6206583.97	53	136	13	30.099	34	16	32.888	136.2250274	34.2758022	-34.2758022	YARANYACKA	H511600	S428		SI5311	6129	3	28	k	1 N	N	I N	N	N	Y
6129-97	613925.93	6206347.78	53	136	14	15.61	34	16	40.098	136.2376693	34.2778051	-34.2778051	YARANYACKA	H511600	S428		SI5311	6129	3	28	k	2 N	Y	' N	N	N	Y
6129-98	614748.72	6207023.83	53	136	14	47.458	34	16	17.828	136.2465161	34.2716189	-34.2716189	YARANYACKA	H511600	S428		SI5311	6129	3	28	g	4 Y	Y	Ś N	N	N	Y
6129-103	607908.84	6206132.84	53	136	10	20.424	34	16	49.389	136.1723401	34.2803858	-34.2803858	YARANYACKA	D24211	A60		SI5311	6129	3	29	1	3 N	Y	' N	N	N	N
6129-306	607596.74	6208064.95	53	136	10	7.352	34	15	46.789	136.168709	34.262997	-34.262997	YARANYACKA	H511600	S418		SI5311	6129	3	29	f	3 N	N	I N	N	N	N
6129-307	607595	6208064.97	53	136	10	7.284	34	15	46.789	136.16869	34.262997	-34.262997	YARANYACKA		S418		SI5311	6129	3	29	f	3 N	N	I N	N	N	N
6129-308	607595	6208064.97	53	136	10	7.284	34	15	46.789	136.16869	34.262997	-34.262997	YARANYACKA	H511600	S418		SI5311	6129	3	29	f	3 N	N	I N	N	N	N
6129-309	607595	6208064.97	53	136	10	7.284	34	15	46.789	136.16869	34.262997	-34.262997	YARANYACKA		S418		SI5311	6129	3	29	f	3 N	N	I N	N	N	N
6129-310	607596.74	6208064.95	53	136	10	7.352	34	15	46.789	136.168709	34.262997	-34.262997	YARANYACKA		S418		SI5311	6129	3	29	f	3 N	N	I N	N	N	N
6129-311	607596.74	6208064.95	53	136	10	7.352	34	15	46.789	136.168709	34.262997	-34.262997	YARANYACKA		S418		SI5311	6129	3	29	f	3 N	N	I N	N	N	N
6129-312	607596.74	6208064.95	53	136	10	7.352	34	15	46.789	136.168709	34.262997	-34.262997	YARANYACKA		S418		SI5311	6129	3	29	f	3 N	N	N	N	N	N
6129-313	607596.99	6208063.1	53	136	10	7.363	34	15	46.849	136.1687119	34.2630137	-34.2630137	YARANYACKA	H511600	S418		SI5311	6129	3	29	f	3 N	N	I N	N	N	N
6129-314	607596.74	6208064.95	53	136	10	7.352	34	15	46.789	136.168709	34.262997	-34.262997	YARANYACKA		S418		SI5311	6129	3	29	f	3 N	N	N	N	N	N
6129-315	607596.74	6208064.95	53	136	10	7.352	34	15	46.789	136.168709	34.262997	-34.262997	YARANYACKA	H511600	S418		SI5311	6129	3	29	f	3 N	N	I N	N	N	N
6129-507	611928.91	6212120.88	53	136	12	54.827	34	13	33.488	136.2152298	34.225969	-34.225969	YARANYACKA				SI5311	6129	4	23	j	2 N	Y	<u>N</u>	N	N	N
6129-508	607586.02	6206321.97	53	136	10	7.716	34	16	43.37	136.16881	34.278714	-34.278714	YARANYACKA				SI5311	6129	3	29		3 N	Y	Ś N	N	N	N
6129-539	607528.87	6206314.99	53	136	10	5.484	34	16	43.618	136.1681901	34.2787828	-34.2787828	YARANYACKA				SI5311	6129	3	29		3 N	Y	N	N	N	N
6129-548	608228.81	6205970.97	53	136	10	33.01	34	16	54.523	136.175836	34.281812	-34.281812	YARANYACKA	H511600	S103		SI5311	6129	3	29	m	6 N	N	I N	N	N	N
6129-549	608228.81	6205970.97	53	136	10	33.01	34	16	54.523	136.175836	34.281812	-34.281812	YARANYACKA	H511600	S103		SI5311	6129	3	29	m	6 N	N	I N	N	N	N
6129-573	608228.81	6205970.97	53	136	10	33.01	34	16	54.523	136.175836	34.281812	-34.281812	YARANYACKA	H511600	S103	CT 5400 934 S	SI5311	6129	3	29	m	6 N	N	I N	N	N	N

* Data provided courtesy of PIRSA's online Drillhole Enquiry System [https://des.pir.sa.gov.au/deshome.html]

SHEEP HILL MARINE PORT FACILITY BASELINE STUDY

APPENDIX B Reports of Test Pits and Boreholes

	Golder ssociates	USEI	0 0	N BO			OF SOIL DESC ID TEST PIT R	
	FILL					CLAY (CL,	CI or CH)	
00000	GRAVEL (GP or (GW)			<u>NI NI</u> 1 <u>7 NI</u> 1	ORGANIC	SOILS (OL or OH or F	Pt)
× × ×	SAND (SP or SW SILT (ML or MH))			0 0 0 0 0	COBBLES	or BOULDERS	
× × × × × ×								
Combinatio	ns of these basic	symbols may be used t	o ind	icate mix	ed mater	ials such as	s sandy clay.	
Soil and R	ock is classified a 1993, (Amdt1 – 1		orts d	of Boreh			using the preferred m operties are assessed	
	Particle	Size				Plastic	ity Properties	
Major Divi	sion Sub Division	Particle Size		40				
В	OULDERS	> 200 mm					СН	
(COBBLES	63 to 200 mm		30 -	Low	CL plasticity	CI High plasticity Medium clay	
	Coarse	20 to 63 mm	Plasticitv Index (%)			clay	plasticity clay	
GRAVEL	Medium	6.0 to 20 mm	cabu	20 -				
	Fine	2.0 to 6.0 mm	it v li	20 7			High lic	or MH Juid limit
	Coarse	0.6 to 2.0 mm	stic				s	ilt
SAND	Medium	0.2 to 0.6 mm	ä	10 +		/	OL or ML Low liquid	
	Fine	0.075 to 0.2 mm		- 	CL/ML Clay/S		limit silt	
	SILT	0.002 to 0.075 mm		0	10	-+ +	40 50 60	
	CLAY	< 0.002 mm		0	10		iquid Limit (%)	70 80
MOISTUF Symbol D M W	Dry Sa Moist So	-	ne dry	wing. Cla conditio	n & may	ts may be bi feel cool. S	rittle or friable and pow Sands and gravels tend	-
CONSIST	ENCY AND DE	NSITY		AS	1726 - 19	93		
Symbol	Term	Undrained Shear Strength		Symbo	1	Term	Density Index %	SPT "N" #
VS	Very Soft	0 to 12 kPa		VL	Ve	ery Loose	Less than 15	0 to 4
S	Soft	12 to 25 kPa		L		Loose	15 to 35	4 to 10
F	Firm	25 to 50 kPa		MD	Med	ium Dense	35 to 65	10 to 30
St	Stiff	50 to 100 kPa		D		Dense	65 to 85	30 to 50
VSt	Very Stiff	100 to 200 kPa		VD	Ve	ry Dense	Above 85	Above 50
Н	Hard	Above 200 kPa						
the materia	l. elations are not sta	-	-	-			ons with the observed	

H Ass	older ociates					BBREVIATIONS & TERM AND TEST PIT REPORT
	EXCAVATION METHOD					
AS*	Auger Screwing	RD	Rotary blade or	r drag bit	NQ	Diamond Core - 47 mm
AD*		RT	Rotary Tricone	•	NMLC	Diamond Core - 52 mm
	Auger Drilling		•		-	
V _	V-Bit	RAB	Rotary Air Blas		HQ	Diamond Core - 63 mm
Т	TC-Bit, e.g. ADT	RC	Reverse Circula	ation	HMLC	Diamond Core – 63mm
IA	Hand Auger	PT	Push Tube		BH	Tractor Mounted Backhoe
DH	Hollow Auger	СТ	Cable Tool Rig		EX	Tracked Hydraulic Excavator
TC	Diatube Coring	JET	Jetting		EE	Existing Excavation
/B	Washbore or Bailer	NDD	Non-destructive	e diaging	HAND	Excavated by Hand Methods
	FION/EXCAVATION RESIS					
L	Low resistance. Rapid	penetration	possible with little	e effort from 1	the equipment u	sed.
м	Medium resistance. Ex	<pre>kcavation/po</pre>	ssible at an acce	eptable rate v	vith moderate eff	fort from the equipment used.
н	High resistance to pene effort from the equipmer		avation. Further	penetration is	s possible at a sl	ow rate and requires significant
R		fusal. No fu	urther progress p	ossible with	out the risk of da	mage or unacceptable wear to the
	essments are subjective and or drilling tools, and the exp			tors including	g the equipment	power, weight, condition of
WATER				_		
¥	Water level at d	ate shown		\triangleleft	Partial water los	S
\triangleright	> Water inflow				Complete water	loss
ROUNDW			on of groundwate ge or cave in of tl			as not possible due to drilling wate
BROUNDW ENCOUNTE	ERED les		e strata. Inflow r			ver, groundwater could be present I the borehole/test pit been left ope
SAMPLING	AND TESTING					
SPT		onotration T	est to AS1289.6.	3 1 2004		
4,7,11 N= 30/80mm RW	=18 4,7,11 = Blo Where prac Penetration Penetration	ows per 150r tical refusal occurred un occurred un	mm. N = Blows occurs, the blow nder the rod weig nder the hammer	s per 300mm s and penetra ht only	ation for that inte	owing 150mm seating rval are reported
łW	Hammer do					
IW IB OS	Hammer do Disturbed si	ample	ng on anvi			
IW IB IS IDS	Disturbed s Bulk disturb	ample ed sample	ng on anvir			
IW IB OS BDS G	Disturbed s Bulk disturb Gas Sample	ample ed sample e				
IW IB SDS SV	Disturbed s Bulk disturb Gas Sample Water Samj	ample ed sample e ole	-			
IW IB IDS IDS V P	Disturbed s Bulk disturb Gas Sample Water Samp Field perme	ample ed sample e ole ability test o	ver section noted			
IW IB IDS IDS V P V	Disturbed s Bulk disturb Gas Sample Water Samp Field perme Field vane s	ample ed sample e ole eability test o shear test ex	ver section noted	prrected shea	r strength (s _v = p	beak value, s _r = residual value)
IW IB SDS SDS V P V V V	Disturbed s Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa	ample ed sample ole ability test o shear test ex tion Detecto	ver section noted pressed as unco	prrected shea	r strength (s _v = p	beak value, s _r = residual value)
IW IB SDS SDS V P P V P D M	Disturbed s Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa Pressureme	ample ed sample ole sability test o shear test ex tion Detecto eter test over	ver section noted pressed as unco r reading in ppm r section noted	prrected shea		eak value, s _r = residual value)
IW IB IDS S V P V ID M P	Disturbed s Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa Pressureme Pocket pene	ample ed sample ole sability test o shear test ex tion Detecto eter test over etrometer test	ver section noted pressed as unco r reading in ppm r section noted st expressed as i	orrected shea	ading in kPa	
1W 1B 2DS 2DS 2DS 2 V V V 1D 2 M 2 P 2 1D 2 2 M 2 2 10 2 2 10 2 10 2 10 2 10 2 10	Disturbed s Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled	ample ed sample e ble sability test o shear test ex tion Detecto eter test over etrometer test tube sample	ver section noted pressed as unco r reading in ppm r section noted	orrected shea	ading in kPa	
1W 1B 2DS 2DS 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Disturbed s Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press	ample ed sample e ble sability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indica	orrected shea	ading in kPa	
₩ ₩ B BDS BDS W V P P P P P P P P P P P P P P P P P P	Disturbed s Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co	ample ed sample e ble ability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetrati	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indication on test	orrected shea	ading in kPa	
IW IB IDS S V P V ID M P IO M P IO S P T ICP S P T	Disturbed s Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone	ample ed sample e ble sability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetrati penetration	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indication on test test	prrected shea instrument re ates nominal s	ading in kPa sample diameter	
IW IB DS JS V P V ID M P 63 V/PT CP CP Tu	Disturbed s Bulk disturb Gas Sample Water Sam Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static cone	ample ed sample eability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indica on test test test with pore pro	prrected shea instrument re ates nominal s essure (u) me	ading in kPa sample diameter easurement	in millimetres
IW IB IB SDS SDS V V P ID P M VPT SPT SPT SPTu CP CP SPTu CPTu CPTu CPTu	Disturbed s Bulk disturb Gas Sample Water Sam Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static cone	ample ed sample eability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration penetration	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indicat on test test test with pore pro and Odour (for	prrected shea instrument re ates nominal s essure (u) me specific soil c	ading in kPa sample diameter easurement contamination as	in millimetres sessment projects)
IW IB IB IDS IDS IDS IP ID IP IOC IP ICA ICA ICA ICA ICA ICA ICA ICA ICA ICA	Disturbed s. Bulk disturb Gas Sample Water Sam Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static cone Static cone	ample ed sample eability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration penetration ce of contan	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indicat on test test test test with pore pro and Odour (for nination	instrument re ates nominal s essure (u) me specific soil c R = A	ading in kPa sample diameter easurement contamination as No non-natura	in millimetres sessment projects)
W B DS DS V P V ID M P 63 VPT CP P T U P T C P T C P T C P T C P T C P T C P T C P T C P T C P T C P C R = 0 C S C S C S C S C S C S C S C S C S C	Disturbed s Bulk disturb Gas Sample Water Sam Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static cone Static cone Static cone Static cone Static cone Static cone	ample ed sample ed sample eability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration penetration tamination f visible cont	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indicat on test test test test with pore pro and Odour (for nination	essure (u) me specific soil o R = A R = B	ading in kPa sample diameter contamination as No non-natura Slight non-nat	in millimetres sessment projects) I odours identified ural odours identified
W B S DS / P V ID M P 63 //PT CP PTU Anking of R = 0 R = 1 R = 2	Disturbed s. Bulk disturb Gas Sample Water Sam Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static cone	ample ed sample eability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration penetration tamination f visible cont ation	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indicat on test test test test with pore pro and Odour (for nination tamination	instrument re ates nominal s <u>specific soil c</u> R = A R = B R = C	eading in kPa sample diameter contamination as No non-natura Slight non-nat Moderate non	in millimetres sessment projects) al odours identified ural odours identified -natural odours identified
W B S DS / P V ID M P 63 /PT CP PT PTu anking of R = 0 R = 1 R = 2 R = 3	Disturbed s. Bulk disturb Gas Sample Water Sample Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static cone Static S	ample ed sample eability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration penetration tamination f visible cont ation	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indicat on test test test test with pore pro and Odour (for nination tamination	essure (u) me specific soil o R = A R = B	eading in kPa sample diameter contamination as No non-natura Slight non-nat Moderate non	in millimetres sessment projects) I odours identified ural odours identified
IW IB IB ID ID ID ID ID ID ID ID ID ID	Disturbed s. Bulk disturb Gas Sample Water Sam Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static cone	ample ed sample ed sample ability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration te of contan f visible contant e contamination	over section noted pressed as unco r reading in ppm r section noted st expressed as i e - number indicat on test test test test with pore pro and Odour (for nination tamination	principal sheat instrument re- ates nominal s essure (u) me specific soil of R = A R = B R = C R = D	eading in kPa sample diameter contamination as No non-natura Slight non-nat Moderate non Strong non-na	in millimetres sessment projects) al odours identified ural odours identified -natural odours identified tural odours identified
HW HB DS BDS FP FV PID PM PP J63 VPT DCP CPT CPTu R = 0 R = 1 R = 2 R = 3 ROCK COR TCR = To	Disturbed s. Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static	ample ed sample ed sample e ble sability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration temination ce of contan f visible conta ation e contaminati	ever section noted pressed as unco r reading in ppm r section noted st expressed as in e - number indication on test test test with pore pro- and Odour (for nination tamination tamination tamination	essure (u) me ates nominal s <u>specific soil c</u> R = A R = B R = C R = D Recovery (%)	ading in kPa sample diameter contamination as No non-natura Slight non-nat Moderate non Strong non-na	in millimetres sessment projects) al odours identified ural odours identified -natural odours identified tural odours identified atural odours identified (%)
HW HB DS BDS G W FP FV PID PM PP J63 WPT DCP CPT CPT CPT CPT CPT R = 0 R = 1 R = 2 R = 3 RCCK COR TCR = To Length of	Disturbed s. Bulk disturb Gas Sample Water Samp Field perme Field vane s Photoionisa Pressureme Pocket pene Thin walled Water press Dynamic co Static cone Static	ample ed sample ed sample e ble sability test o shear test ex tion Detecto eter test over etrometer test tube sample sure tests ne penetration penetration temination ce of contan f visible conta ation e contaminati	ever section noted pressed as unco r reading in ppm r section noted st expressed as in e - number indication test test test test with pore pro- and Odour (for nination tamination ion	prrected shea instrument re ates nominal s <u>specific soil o</u> R = A R = B R = C R = D Recovery (%) pre recovered	ading in kPa sample diameter contamination as No non-natura Slight non-nat Moderate non Strong non-na	in millimetres sessment projects) al odours identified ural odours identified -natural odours identified

Golder

TERMS FOR ROCK MATERIAL STRENGTH & WEATHERING AND ABBREVIATIONS FOR DEFECT DESCRIPTIONS

STRENGTH

STRENGTH			
Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa)	Field Guide
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Μ	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
Н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

ROCK STRENGTH TEST RESULTS

Point Load Strength Index, I_s(50), Axial test (MPa)

Point Load Strength Index, I_s(50), Diametral test (MPa)

Relationship between $I_s(50)$ and UCS (unconfined compressive strength) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $I_s(50)$, but can be as low as 5.

ROCK MA	ATERIAL W	EATHERING										
Syn	nbol	Term			Field Guide							
R	S	Residual Soil	subst		er evident; there	ck; the mass structure and is a large change in volume ted.						
E	W	Extremely Weathered		Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.								
	HW		discol	Rock strength usually changed by weathering. The rock may discoloured, usually by iron staining. Porosity may be incre								
DW	MW	Distinctly Weathered	pores Weat	leaching, or may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.								
s	W	Slightly Weathered		Rock is slightly discoloured but shows little or no change of strength relative to fresh rock.								
F	R	Fresh	Rock	Rock shows no sign of decomposition or staining.								
ABBREV	ATIONS FO	OR DEFECT TYPES	AND DES	CRIPTIONS								
Defect Ty	pe		Coating	or Infilling	Roughnes	55						
В	Bedding	parting	Cn	Clean	SI	Slickensided						
Х	Foliation		Sn	Stain	Sm	Smooth						
С	Contact		Vr	Veneer	Ro	Rough						
L	Cleavage)	Ct	Coating or Infill		C C						
J	Joint		Planarit	у								
SS/SZ	Sheared	seam/zone (Fault)	PI	Planar	Vertical B	oreholes – The dip						
CS/CZ	Crushed	seam/zone (Fault)	Un	Undulating		(inclination from horizontal) of the						
DS/DZ		sed seam/zone	St	Stepped	defect is g							
IS/IZ	Infilled se	am/zone				Boreholes – The inclination is						
S	Schistoci	ty			measured	as the acute angle to the						
V	Vein				core axis.	-						

PF	IENT ROJE	CT:	SHE		L PORT INVESTIGA	TION	SUR	NDS: 615900.0 m E 6210000.0 m N MGA94 53 FACE RL: DATUM: AHD	SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:				
	DCAT			EP HIL 661006	L			DEPTH: 2.30 m KET TYPE: 600mm Toothed			GED: AJB DATE: 7/11/08 CKED:		
	1	Exca	ation/		Sampling		Ť Z	Field Material Desc	0.1000-0-0				
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
	L-M		0.0	0.05	TP01-01 0.00-0.05 m PID=0 Jar, SB Duplicates TP01-101, TP01-201		SC / SC / CH	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines. Clayey SAND/ Sandy CLAY, fine to coarse grained sand, high plasticity clay, dark brown/ red, with fine to medium gravel.	D-N D		Inferred topsoil, wheat at surface.		
					TP01-02 0.05-0.15 m PID=0 Jar, 2 x SB PP 0.15 m >500 kPa			Gravely Clayey SAND, fine to coarse grained, orange brown, low plasticity fines, fine to medium gravel.			Inferred calcrete up to 100mm in size.		
					TP01-03 0.35-0.60 m PID=0 Jar, SB, LB								
			0.5								Cemented zones. Calcareous:		
			1.0		TP01-04 1.00-1.40 m PID=0 SB, LB								
F	м		-						о-м				
			1,5—	1.60									
			2				SC	As above, brown.					
			240 240	- 1	TP01-05 1.80-2.00 m PID=0 Jar, SB								
			2.0-										
	×		-		ali 41			9. ×			*		
			-			<u></u>		TEST PIT DISCONTINUED @ 2.30 m GROUNDWATER NOT ENCOUNTERED					

Golder

CENTREX

SHEEP HILL

SHEEP HILL PORT INVESTIGATION

CLIENT:

8

PROJECT:

LOCATION:

REPORT OF TEST PIT: TP02

COORDS: 615750.0 m E 6209700.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2.20 m

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:

LOGGED: AJB

DATE: 7/11/08 DATE: 2/2/09

JOB NO: 087661006 BUCKET TYPE: 600mm Toothed CHECKED: Excavation Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY SYMBOL EXCAVATION RESISTANCE RECOVERED STRUCTURE AND ADDITIONAL SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) USCS OBSERVATIONS DEPTH 0.0 Clayey SAND, fine to coarse grained, dark brown, low plasticity fines, trace of fine to medium gravel. TP02-01 0.00-0.15 m PID = 0 SC Inferred topsoil, wheat at surface, scattered quartz cobbles at surface, Jar, 2 x SB D - M 0.15 L-M Sandy CLAY, medium plasticity, dark red/ brown, fine to coarse sand, trace of fine to medium gravel. -----TP02-02 0 15-0 30 m CI Contains vesicules. Roots TP02-02 0.15-0.30 m Duplicates TP02-102, TP02-202 PID = 0 Jar 2 x SB PP 0.20 m >500 kPa TP02-03 0.30-0.60 m Duplicates TP02-103, TP02-203 PID = 0 Jar, SB, LB ÷ Fb H D 0.30 4 Gravelly Clayey SAND, fine to medium grained, dark orange/ brown, high plasticity fines. Calcareous, gravel is inferred calcrete, cemented zones. SC p. :a di-0.5 0. :0 0.60 SC As above, brown. 1.0 五 CENTREX SHEEP HILL.GPJ <<DrawingFile>> 30/01/2009 15:59 8.1.025 M D - M 1.5 TP02-04 1.50-2.00 m Jar, SB, LB 1.70 SC As above, pale orange/ brown. 087661006 -2.0 PAGE GAP NON-CORED FULL TEST PIT DISCONTINUED @ 2.20 m GROUNDWATER NOT ENCOUNTERED 02 LIB,GLB 2.5 This report of test pit must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. GAP 8 GAP gINT FN. F01e RL3

GAP 6 02 LIB.GLB Log GAP NON-CORED FULL PAGE 087681006

REPORT OF TEST PIT: TP03

COORDS: 616050.0 m E 6210250.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 1.90 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:

LOGGED: AJB CHECKED: DATE: 7/11/08 DATE: 2 2109

CLIENT: CENTREX PROJECT: SHEEP HILL PORT INVESTIGATION LOCATION: SHEEP HILL JOB NO: 087661006

Excavation Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY USCS SYMBOL EXCAVATION RESISTANCE RECOVERED STRUCTURE AND GRAPHIC LOG SAMPLE OR METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) ADDITIONAL OBSERVATIONS FIELD TEST DEPTH RL 0.0 TP03-01 0.00-0.15 m PID=0 SC Clayey SAND, fine to coarse grained, dark brown, low plasticity fines. Inferred topsoil, wheat Jar, 2 x SB L D-N 0.15 TP03-02 0.15-0.30 m PID=0 Jar, 2 x SB PP 0.20 m >500 kPa -Sandy CLAY, high plasticity, dark brown, fine to coarse sand, with fine gravel. CH Roots. L-M Fb D 0.30 -TP03-03 0,30-0,60 m SC Clayey SAND, fine to coarse grained, orange/ brown, medium plasticity fines, with fine to medium gravel. Calcareous. Cemented zones. Gravel is inferred calcrete. PID=0 Duplicates TP03-103, TP03-203 Jar, SB, LB 0.50 0.5 SC As above, brown. 표 1.0 -TP03-04 1.00-1.40 m PID=0 SB, LB M-H D - N -CENTREX SHEEP HILL.GPJ <<DrawingFile>> 30/01/2009 15:59 8.1,025 1.5 TEST PIT DISCONTINUED @ 1.90 m GROUNDWATER NOT ENCOUNTERED 2.0 2.5 This report of test pit must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. GAP gINT FN. F01e RL3

COORDS: 616250.0 m E 6210200.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2.10 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:

LOGGED: AJB CHECKED:

DATE: 7/11/08

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

Excavation Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED GRAPHIC LOG SYMBOL EXCAVATION RESISTANCE STRUCTURE AND SAMPLE OR METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) ADDITIONAL FIELD TEST USCS : **OBSERVATIONS** DEPTH RL 0.0 TP04-01 0.00-0.10 m PID=0 Jar, 2 x SB Clayey SAND, fine to coarse grained, dark brown, low plasticity fines, with fine gravel. SC Cobbles at surface - inferred granite, calcrete. Inferred top soil, wheat. D - M 0.10 TP04-02 0.10-0.20 m PID=0 CH Sandy CLAY, high plasticity, red brown, fine to medium grained sand D Jar, 2 x SB 0.20 TP04-03 0.20-0.50 m PID=0 Clayey SAND, fine to medium, orange/ brown. SC Calcareous L-M SB, LB 0.50 0.5 SC As above, brown. 0 - M 1.0 -표 GAP 5_02 LIB.GLB Log GAP NON-CORED FULL PAGE 087681006 - CENTREX SHEEP HILL.GPJ <<DrawingFile>> 301012009 15:59 8.1.025 M 1.5 1.60 TP04-04 1.60-2.10 m PID=0 Jar, SB, LB SC As above, medium to coarse grained. M 2.0 TEST PIT DISCONTINUED @ 2.10 m GROUNDWATER NOT ENCOUNTERED 2.5 This report of test pit must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. GAP gINT FN. F01e RL3

COORDS: 616450.0 m E 621050.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2,00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:

LOGGED: AJB CHECKED: H DATE: 4/11/08 DATE: 2/2/07

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

-		1	vation	1	Sampling	1		Lat	Field Material Desc		http://	· · · · · · · · · · · · · · · · · · ·
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0		TP05-01 0.00-0.20 m Jar, 2 x SB		<u></u>	CL	Sandy CLAY, low plasticity, orange brown, fine to coarse grained sand.		Γ	
				0.20				CL	Sandy CLAY, low plasticity, dark brown, fine to medium sand.			
					TP05-02 0.30-0.60 m Jar, SB, LB							
			0.5-	0.60	TP05-03_0.60-0.90 m		*	SM	Silty SAND, medium to coarse grained, pale grey/ brown, low	м		
					Jar, 2 x SB		× × ×		liquid limit fines.			
			-	0.90			×	СН	CLAY, high plasticity, grey/ brown/ white, trace of fine to coarse grained sand.			Grey/ brown/ white striped in layers,
LD.	L-M		1.0-		TP05-04 1.00-1 ₋ 30 m Jar, SB, LB							
		K 04/11/08, AJB	1.5	1.60	TP05-05 1.70-2.00 m			ŚM	Silty SAND, medium to coarse grained, grey, low liquid limit fines.	M- W	-	Collapsing sand.
					Jar, SB		× × ×					
			2.0						TEST PIT DISCONTINUED @ 2.00 m GROUNDWATER ENCOUNTERED @ 1.65m			
				Ξ.				1940	*			9
			2.5									
			2.0	T	his report of test pit mi chnical purposes only.	ust t with	oe rea	id in c	onjunction with accompanying notes and abbreviations. It to assess possible contamination. Any references to pote sarily indicate the presence or absence of soil or groundwa	has b	een p	prepared for mination are for ination. GAP gINT FN.

CLIENT: PROJECT: LOCATION: JOB NO:	Shee Shee	TREX EP HIL EP HIL 61006	L PORT INVESTIGAT L	ION	: 	SURI PIT D	RDS: 616300.0 m E 6209950.0 m N MGA94 53 FACE RL: DATUM: AHD PEPTH: 2.30 m KET TYPE: 600mm Toothed		MAC CON LOG	ET: 1 OF 1 HINE: JCB BACKHOE TRACTOR: GED: AJB DATE: 4/11/0 CKED: L DATE: 2/2
Exca	vation		Sampling	_	1	_	Field Material De	_	_	
EXCAVATION RESISTANCE WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	0.5	0.05 0.15 0.25 0.40	TP06-01 0.00-0.05 m PID=0 Jar, 2 x SB TP06-02 0.40-0.80 m PID=0 Jar, SB, LB		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SP	Gravelly SAND, medium to coarse grained, brown, fine to coars gravel, with clay. As above, fine to medium grained sand. As above, medium to coarse grained sand. Gravelly SAND, fine to coarse grained, grey, fine to medium gravel, trace of non-plastic fines. As above, grey/ brown.	зе <u>м</u>	•	Gravel, cobbles at surface up to 100mm size. 1 cobble 150mm in size.
L-M	1.0		TP06-03 1.40-1.80 m PID=0 Jar, SB, LB		0 0	SC	Clayey SAND, fine to coarse grained, orange brown, high plasticity fines with fine to coarse gravel.	м		Gravel is inferred sandstone.
	2.0				TEST PIT DISCONTINUED @ 2.30 m GROUNDWATER NOT ENCOUNTERED	25		34.1		

•

Golder

COORDS: 616100.0 m E 6209900.0 m N MGA94 53 SURFACE RL: DATUM: AHD SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:

LOGGED: AJB CHECKED: DATE: 6/11/08 DATE: 2/2/09

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

PIT DEPTH: 2.10 m BUCKET TYPE: 600mm Toothed

	-	Exca	vation		Sampling		_		Field Material Des			
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
풉	W N M LEXC	WAT	1.0	0.15 0.30	TP07-01 0.00-0.15 m PID=0 Jar, SB TP07-02 0.15-0.30 m Jar, SB PP 0.20 m >500 kPa TP07-03 0.30-0.60 m PID=0 Jar, SB, LB PP 0.50 m >500 kPa TP07-04 1.00-1.40 m PID=0 Jar, SB, LB	REG		CH CH CH SC	Silly SAND, fine to coarse grained, dark brown, low liquid limit fines. Sandy CLAY, high plasticity, red/ brown, fine to medium grained sand. Approximately 20% GRAVEL and COBBLES up to 200mm in size, inferred calcrete, in matrix of Sandy CLAY, high plasticity, orange brown, fine to coarse grained sand. Gravelly clayey SAND, fine to coarse grained, brown, high plasticity fines, fine to coarse gravel.	D - N	н	Calcareous, cemented zones up to 150mm in size, As above.
			2.0 —				0 0 0		TEST PIT DISCONTINUED @ 2.10 m GROUNDWATER NOT ENCOUNTERED			

(Â		Go	lde	r				REPOR	₹T	O	F TEST PIT: T	P08	
				ITREX	ues				RDS: 616050.0 m E 6209600.0 m N MGA94 53 FACE RL: DATUM: AHD					
f	PROJE	CT:	SHE		L PORT INVESTIGAT	ION	1				CON	HINE: JCB BACKHOE TRACTOR:		
	IOB N			361006	_				EPTH: 2.00 m KET TYPE: 600mm Toothed			CKED: 4, DATE: 5		l
	1	Exca	vation	_	Sampling	1		T at	Field Material Desc					_
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	1	
			0.0	0.30	TP08-01 0.00-0.30 m Jar, SB TP08-02 0.30-0.60 m			SC	Approximately 40% GRAVEL and COBBLES, inferred calcrete, white, in a matrix of clayey SAND, fine to medium grained, brown, low plasticity fines. Approximately 40% GRAVEL, COBBLES and BOULDERS up to 400mm in size, inferred calcrete, in matrix of Clayey SAND, fine			Inferred topsoil. Rock is inferred calcrete, white.		14 14 14 14 14 14 14 14 14 14 14 14 14 1
			0.5 —	0.70	Jar, SB, LB				to coarse grained, pale brown, high plasticity fines,					
BH	м		1.0		TP08-03 1₌00-1.40 m Jar, SB, LB			sc	Clayey SAND, fine to coarse grained, orange/ brown, mottled pale brown, high plasticity fines, mottled pale brown.	D-N	2	Contains cobbles, grey with black s	pecks.	
			1.5		TP08-04 1.60-2.00 m Jar, SB									
			-2.0						TEST PIT DISCONTINUED @ 2.00 m GROUNDWATER NOT ENCOUNTERED					
			2.5	geoted	chnical purposes only.	wit	hout a	ftemr	onjunction with accompanying notes and abbreviations. It of assess possible contamination. Any references to pote sarily indicate the presence or absence of soil or groundwa	antial	conto	mination are for	FN. F01e RL3	

GAP 8_02 LIB.GLB Log GAP NON-CORED FULL PAGE 037691006 - CENTREX SHEEP HILL.GPJ <<DRNMINGFIR>> 3001/2009 16:00 31,025

COORDS: 616100.0 m E 6209450.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2.00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D, CHECKED: The D,

DATE: 5/11/08 DATE: 2209

_		LAGA	vation		Sampling				Field Material Desc	riptie	on	
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	L		0.0	0.15	TP09-01 0.00-0.15 m PID=0 Jar, 2 x SB		E H H	SC	Clayey SAND, fine to medium grained, dark brown, low plasticity fines, with fine gravel.	D - N		Inferred topsoil.
				0.30	TP09-02 0.15-0.30 m PID=0 Jar, 2 x SB	1		SC / CH	Clayey SAND/ Sandy CLAY, fine to medium grained sand, high plasticity fines, red/ brown.	D	H - Fb	
			10 10	0.00	TP09-03 0,30-0,60 m PID=0 Jar, SB, LB			SC	Clayey SAND, fine to coarse grained, brown, mottled pale brown, high plasticity fines, with fine to coarse gravel.			Calcareous.
			0.5 —		PP 0,50 m >550 kPa		1 - 1					
			1			11-1-11						Gravel is inferred quartz. Calcareous.
			14			- 1- 1-1						
Ga	124		1.0-			- 14 (* I*)						
	м		-		TP09-04 1,20-1,50 m	1 - 1 - 1				0-м		
			-		PID=0 Jar, SB, LB	- fr - 1 - 1						
			1.5			1 1 1 4						
						1.111.11						
			-			1.141.14						
			-2.0						TEST PIT DISCONTINUED @ 2.00 m GROUNDWATER NOT ENCOUNTERED			
		8	3							3		×
			2.5	ן יד	his report of test pit mu	ust be	reac	l in c	onjunction with accompanying notes and abbreviations. It is to assess possible contamination. Any references to pote	nas b	een p	prepared for

CENTREX

CLIENT:

REPORT OF TEST PIT: TP10

COORDS: 616300.0 m E 6209700.0 m N MGA94 53 SURFACE RL: DATUM: AHD

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:

PROJECT: SHEEP HILL PORT INVESTIGATION LOCATION: SHEEP HILL PIT DEPTH: 1.05 m LOGGED: AJB DATE: 4/11/08 DATE: 2/2/09 JOB NO: 087661006 CHECKED: BUCKET TYPE: 600mm Toothed Excavation Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY USCS SYMBOL EXCAVATION RESISTANCE RECOVERED GRAPHIC LOG STRUCTURE AND SAMPLE OR FIELD TEST METHOD WATER DEPTH (metres) SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS DEPTH RL 0.0 TP10-01 0.00-0.30 m SC I Clayey SAND, fine to coarse grained, dark brown, low plasticity fines, with fine to coarse gravel. Inferred topsoil, roots, calcareous inclusions, crystals. Cobbles, pale orange with black specks, inferred gneiss. PID=0 Jar, 2 x SB L 0 - M 0.30 TP10-02 0.30-0.45 m SM Silty SAND, fine to medium grained, brown/ yellow, low liquid limit Moderately cemented zones up to 150mm in size, roots, vesicules. PID=0 Jar, SB \$ fines, with gravel. 0.5 TP10-03 0.50-0.80 m PID=0 LB H н D 0.80 Approximately 50% GRAVEL and COBBLES, pale grey with crystals, in matrix of Silty SAND, brown, fine to medium grained, low liquid limit fines, with gravel. TP10-04 0.80-1.05 m SM PID≔0 Jar, SB, LB 1.0 TEST PIT DISCONTINUED @ 1.05 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 1.05m 1.5 2.0 2.5 This report of test pit must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP gINT FN. F01e information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. RL3

<u> </u>			_			-		-			_	
(Go	Ide D C iz	r		C	200	REPOF			TEST PIT: TP11
СГ	IENT		CEN	TREX					ACE RL: DATUM: AHD			HINE: JCB BACKHOE
	OJE				L PORT INVESTIGAT	ON	_					RACTOR:
	B NC			EP HIL 661006	L				EPTH: 2.20 m ET TYPE: 600mm Toothed			SED: AJB DATE: 4/11/08 CKED: H DATE: 2/2/09
-		Exca	vation		Sampling		_		Field Material Desc	_		
								D		a characterite		
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	FOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0-	0.05	TP11-01 0.00-0.05 m Jar, 2 x SB	C		SC	Gravelly clayey SAND, fine to coarse grained, dark brown, low plasticity fines, fine to coarse gravel.			Inferred top soil, wheat and cobbles at surace.
	L-M				PP 0 05 m >500 kPa TP11-02 0 05-0 20 m	÷.		СН	Sandy CLAY, high plasticity, brown, fine to coarse grained sand, with fine to coarse gravel.	D-N	Fb -	Contains vesicules, roots.
				0.20	Jar, SB, LB	-					н	
					PP 0.20 m >500 kPa	0	-	SC	Approximately 60% GRAVEL and COBBLES inferred calcrete up to 200mm in size, in a matrix of Clayey SAND, fine to coarse			Inferred calcareous,
						1.	0		grained, brown, high plasticity fines.			
					TP11-03 0.40-0.70 m PID=0		0					
			0.5 —		Jar, LB		o			D		-
						ò						
						10.00	0					
			8			Ċ	0					
			-	0.80			0					Contains cobbles.
					TP11-04 0.80-1.00 m PID=0 Jar, SB, LB		a	SC	Gravelly clayey SAND, fine to coarse grained pale brown, high plasticity fines, fine to coarse gravel.			Inferred calcareous. Gravel and cobbles are inferred calcrete.
			-				0-					1.5
			1.0-			.0	-					_
							0					
뀸						1.4	0					
	м		-	1.20				SC	Approximately 40% GRAVEL and COBBBLES up to 100mm in			Inferred weathered rock
						1.1	a		size, laminated, brown, in a matrix of Clayey SAND, fine to coarse grained, brown, low plasticity fines.			
						7	0-					
			3			0						4
			1.5-									
			1.0				-			D - M		-
			-				0					2
						1.4	0					
						0	-					
			-				2					
					TP11-05 1.90-2.20 m							
					PID=0 Jar, 2 x SB	0	D					
			2.0-			-1	2					-
			-			0	÷		7			
							0					
							-		TEST PIT DISCONTINUED @ 2.20 m GROUNDWATER NOT ENCOUNTERED		Ń	
			2.5	l	"his report of test ait	lot ha		d in a	onjunction with accompanying notes and at hereit if any if	her '		
				geote	chnical purposes only	withc	out al	ttemr	onjunction with accompanying notes and abbreviations. It to assess possible contamination. Any references to pot sarily indicate the presence or absence of soil or groundwa	ential	conta	amination are for
_	_				anon negori oniy ali						znietr	RL3

GAP 8_02 LIB.GLB Log GAP NON-CORED FULL PAGE 037651006 - CENTREX SHEEP HILL.GPJ <<DrawnigFile>> 3001/2009 16:00 81.025

Golde	r		REPO	ORT OF TEST PIT: TP12	2
CENTREX		SUR		SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:	
		PITI		LOGGED: AJB DATE: 4/11/08 CHECKED:	
avation	Sampling	1	Field Material Des	escription	
OS RL	SAMPLE OR FIELD TEST	GRAPHIC LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	NOLLISISNU BUDITIONAL ADDITIONAL OBSERVATIONS	
0.20		SC SC SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines, with gravel. Clayey SAND, fine to coarse grained, pale brown, low plasticity fines, with fine to medium grey gravel. Approximately 50% GRAVEL and COBBLES up to 200mm in size, faminated, grey/ brown with gold specks, in a matrix of Clayey SAND, fine to coarse grained, brown, low plasticity fines.	D - M	
2.0			č. ž.	÷	
	CENTREX SHEEP HIL 097661006	SHEEP HILL PORT INVESTIGATION SHEEP HILL 037661008 avation Sampling Image: Constraint of the second	CENTREX SUR SHEEP HILL PORT INVESTIGATION SAMPLE OR HILL 087681006 BUC avation Sampling UEPTH RL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Associates CORDS: 616350.0 m E 6209400.0 m N MGA94 53 CENTREX SURFACE RL: DATUM: AHD SHEEP HILL PORT INVESTIGATION SHEEP HILL PORT INVESTIGATION SHEEP HILL PORT INVESTIGATION SHEEP HILL PORT INVESTIGATION SAMPLE OR PELD TEST BUCKET TYPE: 600mm Toothed SAMPLE OR PELD TEST BUCKET TYPE: 600mm Toothed SOIL/ROCK MATERIAL DESCRIPTION FIELD TEST BUCKET TYPE: 600mm Toothed SOIL/ROCK MATERIAL DESCRIPTION SAMPLE OR PELD TEST BUCKET TYPE: 600mm Toothed SOIL/ROCK MATERIAL DESCRIPTION SOIL/ROCK MATERIAL DESCRIPTION SOIL DESCRIPTION SO	CENTREX SUPPROCESSION BE 8209400 d m M MAAK 33 SHEET: 1 0 F 1 CENTREX SUPPROCESSION BE 2009400 d m M MAAK 33 SHEET: 1 0 F 1 MCANE USE DATE: 41/108 SUPPROTECT TWOETS IGATION ESTIMATION

GAP 6_02 LIB GLB Log GAP NON-CORED FULL PAGE 087661006 - CENTREX SHEEP HILL GPJ << DrawingFile>> 30/01/2009 18:00 8:1.025

COORDS: 616300.0 m E 6209500.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2.10 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D. CHECKED: 1/2 D.

DATE: 3/11/08 DATE: 2209

_	-	Exca	vation		Sampling				Field Material Desc	cripti	on		
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0-		TP13-01 0.00-0.10 m Jar, SB		1	SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines.	1	1	Inferred topsoil.	
				0.10	PP 0.10 m >450 kPa			СН	Sandy CLAY, high plasticity, red brown, fine to coarse sand,	0-1	1	Deate	
					TP13-02 0 10-0 30 m Jar, SB, LB		÷		Sandy CLAT, high prasticity, red brown, hine to coarse sand.			Roots.	
			9	1		1	÷				Fb - H		
				0.30	PP 0.30 m >450 kPa		<u>:</u> :	СН	Sandy CLAY, high plasticity, orange/ brown, mottled pale brown,			Calcareous,	
					2: 		÷	1200	fine to coarse grained sand, trace of fine to medium gravel.			Calcaloud,	
					TP13-03 0.40-0.70 m Jar, SB, LB			ŝ					
			0.5										
										D			
			-							Ĩ			
							<u></u>				н		
			1.0-				÷						
표	L-M						<u></u>						
			Ī				<u> </u>						
				1.20			<u>р</u>	SP	Gravelly SAND, fine to coarse grained, brown, fine to coarse	_	_		
0.1.05							. 0	1.501	gravel, with clay.				
0.01							· 0·						
112000							0						
tino .			1.5-										
air mu							0						
			3		TP13-04 1.60-1.90 m Jar, SB		. 0						
					un ob		0			D - M			
							0						
							0						
			-				(. v.)						
							0						
			2.0-				. <i>p</i> .						
	$\left \cdot \right $	-				-		+	TEST PIT DISCONTINUED @ 2.10 m GROUNDWATER NOT ENCOUNTERED				+
				3					GROUNDWATER NOT ENCOUNTERED			10	
			-										
			2.5	T	his report of test pit m	ust	be rea	d in d	conjunction with accompanying notes and abbreviations. It	has t	been	prepared for	1
				geote	chnical purposes only,	, wit	hout a	ttem	ot to assess possible contamination. Any references to pot sarily indicate the presence or absence of soil or groundwa	ential	conta	amination are for	016
		_	_							_			RL3

PF		IT: ECT: TION:	CEN SHE	TREX EP HILL EP HILL	PORT INVESTIGATIO	N	SURI	RDS: 616550.0 m E 6209600.0 m N MGA94 53 FACE RL: DATUM: AHD DEPTH: 1.90 m	a U	MACH CONT	ET: 1 OF 1 HINE: JCB BACKHOE IRACTOR: GED: AJB DATE: 3/11/08
JC	DB N			61006			BUCł	KET TYPE: 600mm Toothed	3	CHEC	CKED: 12 09
METHOD	EXCAVATION	T	vation (seuteu)	DEPTH	SAMPLE OR FIELD TEST	GRAPHIC	USCS SYMBOL	Field Material Desc	- p	CONSISTENCY B DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
We	L-M		<u>8</u> <u>e</u> 0.0	RL 0.25	TP14-01 0.00-0.25 m PID = 0 Duplicates TP14-011, TP14-012 Jar, 2 x SB TP14-02 0.30-0.60 m PID = 0 Duplicates TP14-021, TP14-022 Jar, SB, LB		-	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines, fine to coarse gravel. Approximately 20% GRAVEL and COBBLES, brown, shiny up to 100mm in size in a matrix of Silty SAND, fine to medium grained, brown/ pale brown, low liquid limit fines.	D-N		Weakly cemented zones up to 200mm in size, inferred topsoil, roots.
			0,5		TP14-03 0,70-1,00 m PID = 0 LB		SC	Approximately 40% GRAVEL and COBBLES up to 150mm in size, brown/ red, shiny, in a matrix of Clayey SAND, fine to coarse grained, grey/ brown, low plasticity fines.	-		Inferred weathered rock.
HB	м		1.0		TP14-04 1.10-1.40 m PID = 0 Duplicates TP14-041, TP14-042 Jar, SB			2	D		
			1.5-								
			2.0 —					TEST PIT DISCONTINUED @ 1.90 m GROUNDWATER NOT ENCOUNTERED			
		N.	-					×	μ.		
			2.5		his report of test pit mus						

COORDS: 616500.0 m E 6209900.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 1.00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB

CHECKED:

DATE: 6/11/08 DATE: 2 2 09

	-	Exca	vation		Sampling				Field Material Des	cript	ion	
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	L,		0.0	0.10	TP15-01 0.00-0.10 m PID=0 Jar, SB			SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines.	p-	м	Roots, inferred topsoil.
	м			0.30	TP15-02 0,10-0,30 m PID=0 Jar, 2 x SB			SC	Clayey SAND, fine to coarse grained, dark grey/ brown, low plasticity fines.			Strongly cemented zones, roots.
E			06		TP15-03 0.40-0.60 m PlD=0 Jar, SB, LB		0 	SC	Clayey Gravelly SAND, fine to coarse grained, pale orange/ brown, fine to coarse gravel, high plasticity fines.			Calcareous, Contains cobbles and boulders up to 600mm in size, inferred gneiss. Zones of weathered rock observed.
10	M-H		0.5				o 0 4 0			D		
			10 01 01				0					
			-1.0				. 0		TEST PIT DISCONTINUED @ 1.00 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 1.0m			
			1.5-									
			-									
			-									
			2.0 —									
			-		*				xe a			
			2.5									

GAP 8_02 LIB.GLB Log_GAP NON-CORED FULL PAGE 057651006 - CENTREX SHEEP HILL GPU << DrawingFile>> 3001/2009 16:00 811/026

REPORT OF TEST PIT: TP16

COORDS: 616600.0 m E 6209900.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 0.85 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB

CHECKED:

DATE: 6/11/08 DATE: 2 2 09

CLIENT: CENTREX SHEEP HILL PORT INVESTIGATION PROJECT: LOCATION: SHEEP HILL JOB NO: 087661006

	_	Exca	vation		Sampling				Field Material Desc	riptic	on	
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	L		0.0		TP16-01 0.00-0.10 m PID=0 Jar, SB			SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines, with fine to coarse gravel.	D - N	1	
	L-M		-	0.10	TP16-02 0.10-0.25 m PID=0 Jar, 2 x SB			СН	Sandy CLAY, high plasticity, red/ brown, fine to coarse grained sand, with gravel.	D	Fb - H	Contains orange/ while cobbles of inferred gneiss, some inferred quartz.
				0.25	TP16-03 0.25-0.35 m PID=0 Jar, SB			SC	Clayey SAND, fine to coarse grained, brown, high plasticity fines, with gravel.			Intruded by weathered rock. Calcareous. Contains cobbles.
Ha	н		0.5	0.35	TP16-04 0.50-0.80 m PID=0 Jar, SB, LB		x x x x x x x x x x	SM	Silty SAND, fine to coarse grained, pale brown, low plasticity fines, with gravel.	a		Intruded by inferred weathered rock. Contains dark, flaky and grey inferred gneiss, shiny, throughout layer. Calcareous. Contains cobbles.
							×···	-	TEST PIT DISCONTINUED @ 0,85 m GROUNDWATER NOT ENCOUNTERED			
			1.0						PRACTICAL REFUSAL @ 0.85m		æ	
				T geotee	chnical purposes only.	. wit	hout at	ttemr	onjunction with accompanying notes and abbreviations. It is to assess possible contamination. Any references to pote	ntial	conte	mination are for
_					mormation only an	u 00		eves	sarily indicate the presence or absence of soil or groundwat	ег со	ntam	ination. GAP gINT FN. F01e RL3

Golder

COORDS: 616700.0 m E 6209900.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 1.00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB

CHECKED: th

DATE: 6/11/08 DATE: 22209

0.0 TP17-01 0,00-0.20 m Jar, 2 x SB SC Clayey Gravelly SAND, fine to coarse grained, dark brown, fine to 100mm in size, roots.			Exca	vation		Sampling				Field Material Desc	ripti	on	
0.0 1/171/2010.00-02.00 m 1/271/2010.00-02.00 m 1/271/2010.00-02.	METHOD	EXCAVATION RESISTANCE	WATER		DEPTH RL	FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
LM 10 10 10 Cemented zones, up to 150mm in asce. H 0.5 0.60 0.5 0.60 H 0.5 0.60 10 10 H 10 10 10 10 H		ų.		0.0-		TP17-01 0,00-0,20 m Jar, 2 x SB	n n man	a	SC	Clayey Gravelly SAND, fine to coarse grained, dark brown, fine to coarse gravel, low plasticity fines.			Inferred topsoil, cemented zones up to
3 10 10 1<		L-M		-		PID=0 Jar, 2 x SB TP17-03 0.30-0.50 m PID=0		* * * *	SM	Silty SAND, fine to medium grained, pale orange/ brown, low liquid limit fines.			Intruded by grey weathered rock.
1.0 TEST PIT DISCONTINUED @ 100 m GROUNDWATER NOLUMERED PRACTICAL REFUSAL @ 1.00m 1.5 1.5 1.5		Н			0.50	PID=0			SC	Clayey SAND, fine to coarse grained, dark grey, low plasticity fines, interbedded with material described in the above layer.	D		Inferred weathered rock.
				-1,0						GROUNDWATER NOT ENCOUNTERED			
				1.5—									
				2.0		đ				* ·			-42

COORDS: 616650.0 m E 6209800.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 0.90 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D, CHECKED: M D,

DATE: 6/11/08 DATE: 2\2\09

-	<u> </u>	Exca	vation	1	Sampling	-		1	Field Material Desc			T
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	L		0.0	0.15	TP18-01 0.00-0.15 m PID=0 Jar, SB			SC	Clayey SAND, fine to medium grained, dark brown, low plasticity fines, with fine to coarse gravel,	D - N	Γ	Inferred topsoil, calcareous gravel.
	м			0.10	TP18-02 0,15-0,45 m PID=0 Jar, SB, LB			SC	Approximately 20% GRAVEL and COBBLES, inferred calcrete up to 200mm in size in a matrix of Clayey SAND, fine to medium grained, dark brown, low plasticity fines.			Calcareous, Vesicules, roots, Interbedded with inferred weathered rock
H	H		0.5	0.45	TP18-03 0.45-0.90 m PID=0 Jar, 2 x SB		- 0 0 0 0 0 0 0 0 0	SP	Gravelly SAND, fine to coarse grained, grey, fine to medium gravel, with low plasticity fines.	D		Cemented zones up to 200mm in size. Inferred weathered rock, Contains cobbles up to 200mm in size.
			1.0						TEST PIT DISCONTINUED @ 0.90 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 0.90m			
			1.5									
			2.0									
									, s			*)
			2.5									

Golder

COORDS: 616400,0 m E 6210050.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2,40 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB CHECKED:

DATE: 4/11/08 DATE: 21209

-	T	T	vation	1	Sampling	1		1	Field Material Des			· · · · · · · · · · · · · · · · · · ·
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0-		TP19-01 0.00-0.10 m Jar			SP	SAND, fine to coarse grained, orange/ brown, trace of low plasticity fines.		Π	
				0.15	-			SP	As above, with fine to coarse gravel.	-		
				0.25	-			SP	As above, trace of fine gravel.	-		
			0.5 —		TP19-02 0,30-0,70 m Jar, SB, LB					D - M		
				0.70	DD 0.70 m =100 Up-			0.11				
			ŝ		PP 0.70 m =100 kPa TP19-03 0.70-1.00 m CLAY Sample and SAND Sample Jar, SB, LB PP 0.71 m =90 kPa			SC SC	Sandy CLAY, high plasticity, orange brown, fine to medium grained sand, interbedded with Clayey SAND, fine to medium grained, brown, high plasticity fines.			
			1.0—									Band of clay, dark grey.
цр	L-M									м		Pockets of pale brown, fine to coarse grained sand.
			1.5 —	1.50	TP19-04 1.50-2.00 m			сн	CLAY, high plasticity, pale grey / white, trace of fine to coarse	-		
		04/11/08, AJB			Jar, 2 x SB				grained sand.			
		04/1	2.0-	2.00								
			-		TP19-05 2.00-2.40 m Jar, 2 x SB			SC	Clayey SAND, medium to coarse grained, grey, high plasticity fines.	w		
-	_	_					<u></u>	_	TEST PIT DISCONTINUED @ 2.40 m			
			2.5						TEST PIT DISCONTINUED @ 2.40 m GROUNDWATER ENCOUNTERED @ 2.0m			

COORDS: 616400.0 m E 6209500.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2,35 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D CHECKED: H

DATE: 3/11/08 DATE: 2/2/09

	E	Exca	<i>vation</i>		Sampling				Field Material Des				
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	Ľ		0.0	0.20	TP20-01 0.00-0.20 m Jar, 2 x SB			SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines. Approximately 40% GRAVEL and COBBLES, up to 150mm in size, pale grey, in a matrix of Silty SAND, fine grained, brown/ pale brown, low liquid limit fines.				
	M		0.5		TP20-02 0.40-0.70 m Jar, 2B, LB		x x x x x x x x x x x x x x x x x x x						
			-	0.75	TP20-03 0.75-1.00 m Jar, SB, LB		*	SC	Approximately 40% GRAVEL, COBBLES and BOULDERS up to 250mm in size, brown, subangular, in a matrix of Clayey SAND, fine to coarse grained, pale brown, low plasticity fines.	-		Inferred weathered rock.	-
BH			1.0						-	D - N	a		
			1.5—		*.)								
	M-H		4										
			2.0		TP20-04 2.00-2.35 m SB				×				
			-		*				TEST PIT DISCONTINUED @ 2.35 m GROUNDWATER NOT ENCOUNTERED				

Golder

COORDS: 616450.0 m E 6209600.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 1.00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D, CHECKED: L D,

DATE: 3/11/08 DATE: 212109

		r	Exca	vation		Sampling	-			Field Material Desc	ripti	on	
	METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.0-	0.07	TP21-01 0.00-0.07 m PID=0	į,	1	SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines.	Ī	T	Inferred topsoil.
		L			0.20	Jar, SB TP21-02 0.10-0.20 m PID=0 Jar, SB			SC	As above, brown.	м		
		М		-		TP21-03 0,30-0,40 m PID=0 Jar, SB, LB		× × × × × × × × × × × ×	SM	Silty SAND, fine to medium grained, pale brown, low liquid limit fines.			Cemented sand zones, up to 200mm in size,
	H	н		0.5	0.50	TP21-04 0,50-0,70 m PID=0 Jar, SB, LB			SC	Approximately 20% GRAVEL COBBLES and BOULDERS up to 250mm in size, black or grey inferred schist, in a matrix of Clayey SAND, fine to coarse grained, grey/ brown, tow plasticity fines.	D		Rock breaks apart with hand pressure, Inferred weathered rock.
				-1.0						TEST PIT DISCONTINUED @ 1.00 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 1.00m			
< <d amingfile="">> 30/01/2009 16:00 8.1.025</d>													
2				1.5									
87681006 - CENTREX SHEEP I				2.0 —									3
GAP 8 02 LIBGLB LOG GAP NON-CORED FULL PAGE 087681006 - CENTREX SHEEP HILL G								18		×			× 4
MP 8 02 LIB.GLB Log G				2.5	Tigeotee	chnical purposes only.	. witi	hout a	ttemr	onjunction with accompanying notes and abbreviations. It is to assess possible contamination. Any references to pote sarily indicate the presence or absence of soil or groundwate sarily indicate the presence or absence of soil or groundwate sarily indicate the presence or absence of soil or groundwate sarily indicate the presence or absence of soil or groundwate sarily indicate the presence or absence of soil or groundwate sarily indicate the presence of soil or groundwate sarily indicate the presence of a solution of the presence of soil or groundwate sarily indicate	Intial	conts	mination are for

EXCAVATION RESISTANCE

L-M

METHOD

ᇤ

Ħ

1.0

TP22-06 1.10-1.30 m Jar, SB, LB

REPORT OF TEST PIT: TP22

COORDS: 616500_0 m E 6209700.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 1,30 m

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D CHECKED:

DATE: 3/11/08

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

BUCKET TYPE: 600mm Toothed Excavation Sampling Field Material Description USCS SYMBOL RECOVERED MOISTURE CONDITION CONSISTENC DENSITY STRUCTURE AND SAMPLE OR GRAPHIC LOG WATER SOIL/ROCK MATERIAL DESCRIPTION DEPTH (metres) ADDITIONAL FIELD TEST OBSERVATIONS DEPTH RL 0.0 TP22-01 0 00-0 05 m Jar, SB SP SAND, fine to coarse grained, orange/ brown, with clay, Many roots, inferred topsoil. 0.05 Gravelly Clayey SAND, fine to medium grained, dark brown, low plasticity fines, fine to coarse gravel. SC 0 TP22-02 0 10-0 20 m Jar, SB a Many roots. Ó 0.20 TP22-03 0,20-0,30 m Jar, SB Clayey SAND, fine to medium grained, brown, low plasticity fines. SC 0.30 SM Approximately 40% GRAVEL and COBBLES up to 200mm in × size, black and shiny inferred schist or mottled while and pale red inferred gneiss in a matrix of Silty SAND, fine to medium grained, pale brown/ white, low liquid limit fines. TP22-04 0.40-0.60 m Jar, SB TP22-05 0 40-0 70 m LB 0.5 М

> TEST PIT DISCONTINUED @ 1.30 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 1.30m

GAP 8_02 LIB.GLB Log GAP NON-CORED FULL PAGE 087661006 - CENTREX SHEEP HILL.GPJ <<DrawingFile>> 30/01/2009 16:00

8.1.025

Golder

GAP 8_02 LB.GLB Log GAP NON-CORED FULL PAGE 087681008 - CENTREX SHEEP HILL GPJ <<DRMmogFliw>> 30/01/2009 16:00 8:1.025

REPORT OF TEST PIT: TP23

COORDS: 616450,0 m E 6209800.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 0.60 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D CHECKED: D

DATE: 6/11/08 DATE: ンレントック

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

Bit State of the state of t
Image: Section of the section of t
M JP23-02 0.15-0.30 m First Pit Discontinue discusse grained, brown, low plasticity fines, fine to coarse grained, brown, low coarse grained, brown, low coarse grained, brown, low Contains pale orange motited while, coarse grained, brown, low H 0.5 TP23-03 0.30-0.45 m First Pit Discontinue discusse grained, grey/brown, low D Inferred quelse, in a matrix of Clay SAND, fine to coarse grained, grey/brown, low D Inferred quelse, in a matrix of Clay SAND, fine to coarse grained, grey/brown, low D 0.5 0.5 SC Gravely Clay SAND, fine to coarse grained, grey/brown, low D Inferred weathered rock, shiny. First Pit Discontinue do 0.86 m First Pit Discontinue do 0.86 m First Pit Discontinue do 0.86 m Inferred weathered rock, shiny. Gravely Clay SAND, fine to coarse grained, grey/brown, low First Pit Discontinue do 0.86 m First Pit Discontinue do 0.86 m Inferred weathered rock, shiny. First Pit Discontinue do 0.86 m First Pit Discontinue do 0.86 m First Pit Discontinue do 0.86 m Inferred weathered rock, shiny. First Pit Discontinue do 0.86 m First Pit Discontinue do 0.86 m First Pit Discontinue do 0.86 m
m H Image: Constraint of the state
n 0.5 TP30.44.0.45-0.60 m SC Gravely Clayey SAND, fine to coarse grained, grey/ brown, low plasticity fines, fine to coarse gravel. 1 0.5 TEST PIT DISCONTINUED @ 0.60 m TEST PIT DISCONTINUED @ 0.60 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REPUSAL @ 0.60m TEST PIT DISCONTINUED @ 0.60 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REPUSAL @ 0.60m 1.0 - - - - -
GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 0.60m
2.5 This report of test pit must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. GAP gINT F

		T:	CE	NTREX		10.1			RDS: 616550.0 m E 6209800.0 m N MGA94 53 FACE RL: DATUM: AHD			ET: 1 OF 1 HINE: JCB BACKHOE	
	ROJE DCAT	CT: NON:		EEP HIL EEP HIL	L PORT INVESTIGAT L	'ION	PI	IT C	DEPTH: 0.70 m			TRACTOR: GED: AJB DATE: 6/1	11/0
JC	DB NO	0:	087	661006					KET TYPE: 600mm Toothed			CKED: μ DATE: 2	
_	-	Exca	vation		Sampling				Field Material Desc				
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	DOJ	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	L		0.0	0.20	TP24-01 0.00-0.20 m PID=0 Jar, 2 x SB	7	4	SC	Gravelly Clayey SAND, fine to medium grained, dark brown, fine to coarse gravel, low plasticity fines.	0-1		Calcareous.	
E	M-H			0.20	TP24-02 0.20-0.50 m PID=0 Jar, SB, LB	4. P	0 I I 0	SC	As above, pale brown.	D			
			0.5	0.50	TP24-03 0,50-0.70 m PID=0 Jar, 2 x SB	× 0 × 0 × 0	0	SM	Gravelly Sity SAND, fine to medium grained, pale brown/ white, low liquid limit fines. TEST PIT DISCONTINUED @ 0.70 m				_
			1.0										
	۲		2.0									×	

COORDS: 615314.0 m E 6210419.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 0.90 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB DA' CHECKED: TA DA'

DATE: 5/11/08 DATE: 2 2 0 9

Excavation					Sampling			Field Material Desc	on	4			
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	L		0.0-		TP25-01 0.00-0.15 m PID=0 Jar, 2 x SB			SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines.	D - M	Γ	Inferred topsoil	
	м-н		1	0.15	TP25-02 0.15-0.30 m PID=0 Jar, SB			SC	As above, brown, with white calcareous gravel.			Weakly cemented zones up to 150mm in size.	
				0.30	TP25-03 0,30-0,50 m PID=0 Duplicates: TP25-103, TP25-203_			SC	Approximately 40% COBBLES up to 200mm in size, inferred calcrete, includes grey cobbles from 0.5m depth, in a matrix of Clayey Gravelly SAND, fine to coarse grained, brown, fine to coarse gravel, low plasticity fines.				
ii o			0.5 —		Jar, SB, LB					D			
	H												
	_						4 1 		TEST PIT DISCONTINUED @ 0.90 m GROUNDWATER NOT ENCOUNTERED				
			1.0-						PRACTICAL REFUSAL @ 0,90m				
			-						92 				
			-										
			1.5—										
			-										
			1										
			-										
			2.0-										
			-										
			-									-	
			ļ										
			2.5	 тт	his report of test pit mu				onjunction with accompanying notes and abbreviations. It i				

Acaller	1
Golder	

COORDS: 614640.0 m E 6210436.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2.00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB

DATE: 5/11/08 CHECKED: the DATE: 2/2/09

	_	Excavation Sampli						Field Material Descriptio					
tania - Alasanta - Ala	METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.0-		TP28-01 0.00-0.30 m PID≂0 Jar, SB PP 0.20 m =90 kPa			SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines; trace of fine gravel.	D -		
				=	0.30	TP26-02 0.30-0.50 m PID = 0 Jar, SB, LB	An of the Alexandrian		SC	As above, medium plasticity fines, trace of fine to medium gravel.			
				0.5	0.50	PP 0.50 m >500 kPa			SC	As above, mottled pale orange/ white.			Inferred calcareous inclusions.
						TP26-03 0.70-1.00 m PID=0 Jar, SB							
ic	10	L-M		1.0-		PP 1₀00 m =440 kPa					D		
0/01/2009 16:00 8.1.025													
GPJ < <drawingfile>> 3</drawingfile>				1.5	1.50		-		SC	Clayey SAND, fine to coarse grained, brown, high plasticity fines.			
- CENTREX SHEEP HILL.				6 S		TP26-04 1,70-2.00 m PID=0 Jar SB, LB					D - N		
GAP 8_02 LIB/GLB LOG GAP NON-CORED FULL PAGE 087661005 - CENTREX SHEEP HILL GPJ < <drawingfile>> 30/01/2009 16:00 8:1:025</drawingfile>				-2.0						TEST PIT DISCONTINUED @ 2.00 m GROUNDWATER NOT ENCOUNTERED	<i>M</i> .		× .
B LOD GAP NON-COHE													
GAP 5 UZ LIB.01	1			2.5	geoted	chnical purposes only,	with	iout al	temp	onjunction with accompanying notes and abbreviations. It is assess possible contamination. Any references to pote sarily indicate the presence or absence of soil or groundward	entia	l confa	amination are for

COORDS: 614233.0 m E 6210789.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2.00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D.

CHECKED:

DATE: 5/11/08

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

		ixca	vation		Sampling	_			Field Material Des			
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0-		TP27-01 0.00-0.10 m PID=0		<u>-</u>	sc	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines.	T	1	Inferred topsoil, grass at surface.
			-	0.10	Jar, SB TP27-02 0.10-0.30 m PID=0 Jar, SB			SC	As above, fine to medium grained sand, brown.	р.	M	Moderately cemented zones up to 200n in size, contained vesicules, roots.
				0.30	TP27-03 0,30-0,60 m PID=0 Jar, SB, LB PP 0,40 m >500 kPa			SC	Clayey SAND, fine to coarse grained, dark brown, high plasticity fines.			
			0.5 —	0.60	TP27-04 0.60-1.00 m			SC	Clayey SAND, fine to coarse grained, brown mottled pale brown,	E		Calcareous.
					PID=0 Jar, SB, LB PP 0.70 m =150 kPa				medium plasticity fines, with fine to medium gravel.			
19	L-M		1.0									
				1.30				SC	Clayey SAND, fine to coarse grained, brown, low plasticity fines.	-0-	м	
			1.5									
			-		TP27-05 1,70-2,00 m PID=0 Jar, SB							
			2.0			ľ			TEST PIT DISCONTINUED @ 2.00 m GROUNDWATER NOT ENCOUNTERED			
			-		×				8 •			
			2.5									
			2,0	Th geotec	innical purposes only.	With	nout a	ttemr	onjunction with accompanying notes and abbreviations. It to assess possible contamination. Any references to pote arily indicate the presence or absence of soil or groundwa	antic	d confr	mination are for

	Golder
U A	ssociates

COORDS: 613619.0 m E 6211060.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2.00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:

LOGGED: AJB CHECKED: DATE: 5/11/08 DATE: ン(2)09

	Excavation Samp						_	Field Material Description					
METHOD	EXCAVATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	L			0.0-		TP28-01 0.00-0.10 m Duplicates TP28-101,		1	SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines.	Ī	T	Inferred topsoil, wheat at surface, roots.
	F			Ī		TP28-201 Jar, SB							Moderately cemented zones up to 100mm
				-		TP28-02 0.20-0.40 m							in size.
						Jar, SB, LB							
					0.40								
						TP28-03 0.40-0.80 m Jar, SB, LB		о- Д	SC	Gravelly Clayey SAND, fine to coarse grained, pale brown, high plasticity fines, fine to medium gravel.	0-1	4	
	L-N	N		0.5 —				Ø-					
				-				0.0					
								a					
								0.0					
					0.90			0					
퓲				1.0				*	SM	Silty SAND, fine to medium grained, pale brown mottled red/ white/ yellow, with gravel.			Contains cobbles.
m				1.0		TP28-04 1.00-1.40 m Jar, SB, LB		×					-
								× . × .					
25				-				× . × .					
00 8.1.0				ŝ				* 					
2009 16							- Ĩ	×					
> 30/01	м			1.5-				×			м		
vingFile>							1	×					
<< Oran							- 6	x x x		-			2.
till.GP.								×					2
SHEEP				-				. * *					
INTREX				-				× ×					
006-05				2.0									
08766										TEST PIT DISCONTINUED @ 2.00 m GROUNDWATER NOT ENCOUNTERED			
LL PAGE													
RED FU										9			
NON-CO				-									
OG GAP													-
SGLB L				2.5									
GAP 8_02 LIB/GLB Log GAP NON-CORED FULL PAGE 087681006 - CENTREX SHEEP HILL GPJ < <drawingfile>> 30/01/2009 16:00 8.1.025</drawingfile>					T geote	chnical purposes only.	with	hout at	temr	onjunction with accompanying notes and abbreviations. It to assess possible contamination. Any references to pote	ential	conta	mination are for
266						information only and	d do	o not n	eces	sarily indicate the presence or absence of soil or groundwar	ter co	ontam	ination. GAP gINT FN. F01e RL3

Golder

REPORT OF TEST PIT: TP29

COORDS: 612983.0 m E 6211054.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 1,30 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB CHECKED:

DATE: 5/11/08 DATE: 2209

CLIENT:	CENTREX
PROJECT:	SHEEP HILL PORT INVESTIGATION
LOCATION:	SHEEP HILL
JOB NO:	087661006

_	1	1	vation		Sampling			_	Field Material Des	cubu	on	
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	L		0.0		TP29-01 0.00-0.15 m Jar, 2 x SB			CL	Sandy CLAY, low plasticity, dark brown, fine to coarse sand.	T	1	Inferred topsoil.
			3	0.15	TP29-02 0,15-0,35 m Jar, 2 x SB	ATTAC AND TO ATC		GC	Approximately 50% COBBLES and BOULDERS, inferred calcrete, white, up to 100mm in size or inferred gneiss, pale orange up to 600mm in size, in a matrix of Clayey Sandy GRAVEL, fine to coarse grained, orange brown, fine to coarse grained sand, high plasticity fines.			
			0.5 —		TP29-03 0.40-0.70 m Duplicates: TP29-103, TP29-203 Jar, SB, LB							
5										0 - N		
	H											
			1				÷:					
			1.0—									
			~						TEST PIT DISCONTINUED @ 1.30 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 1.30m			
			1.5 —									
			-									
			-									
			2.0 —									
					x e							
												10. •
			-									
			2.5						njunction with accompanying notes and abbreviations. It			

Golder

5

GAP 8, 02 LIB.GLB

REPORT OF TEST PIT: TP30

COORDS: 612511.0 m E 6210845.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 2.00 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR:

LOGGED: AJB CHECKED: 1 DATE: 5/11/08 DATE: 212/09

CLIENT: CENTREX PROJECT: SHEEP HILL PORT INVESTIGATION LOCATION: SHEEP HILL JOB NO: 087661006

Excavation Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY EXCAVATION RESISTANCE **JSCS SYMBOL** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG METHOD WATER DEPTH (metres) SOIL/ROCK MATERIAL DESCRIPTION DEPTH RL Clayey SAND, fine to coarse grained, dark brown, low plasticity fines. 0.0 SC Inferred topsoil, wheat. TP30-01 0 05-0 40 m PID=0 Jar, SB 0.40 TP30-02 0.40-0.60 m PID=0 Jar, SB, LB CL Sandy CLAY, low plasticity, orange/ brown, fine to coarse grained Cemented zones up to 400mm in size. sand, trace of gravel. 0.5 D-N Inferred calcareous. TP30-03 0.70-1.00 m PID=0 SB H L-M 1.0 • 1.20 -----CL As above, brown mottled pale brown. GAP NON-CORED FULL PAGE 087661006 - CENTREX SHEEP HILL GPJ <<DrawingFile>> 30/01/2009 18:00 8:1.025 1.5 М TP30-04 1.70-2.00 m PID=0 Jar, SB, LB 2.0 TEST PIT DISCONTINUED @ 2.00 m GROUNDWATER NOT ENCOUNTERED 25 This report of test pit must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. GAP gINT FN. F01e RL3

Golder

REPORT OF TEST PIT: TP31

COORDS: 611980.0 m E 6210951.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 1.10 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D.

CHECKED:

DATE: 6/11/08

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

	r = 1	1	vation	T	Sampling	T	<u> </u>	1.00	Field Material Description
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION
	L-M		0.0	0.15	TP31-01 0.00-0.10 m PP 0.15 m =260 - =320 kPa TP31-02 0.20-0.50 m		o ° 4 0 1 1	SC	Clayey SAND, fine to medium grained, dark brown, low plasticity fines. Clayey Gravelly SAND, fine to coarse grained, brown mottled pale brown, fine to coarse gravel, medium plasticity fines. Clayer Gravelly SAND, fine to coarse gravel, medium plasticity fines. Calcareous inclusions.
BH	H		0.5	0.50	TP31-03 0,70-1,00 m			sc	Approximately 60% GRAVEL and COBBLES, inferred calcrete or grey gravel and cobbles up to 200mm in size, in a matrix of Clayey SAND, fine to coarse grained, brown mottled pale brown, medium plasticity fines.
			1.0—		TP31-04 1.00-1.10 m				TEST PIT DISCONTINUED @ 1.10 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 1.10 m
			1.5-						
			2.0						o
			2.5						

REPORT OF TEST PIT: TP32

COORDS: 611434.0 m E 6210945.0 m N MGA94 53 SURFACE RL: DATUM: AHD

PIT DEPTH: 1,60 m

BUCKET TYPE: 600mm Toothed

SHEET: 1 OF 1 MACHINE: JCB BACKHOE CONTRACTOR: LOGGED: AJB D CHECKED: The D

DATE: 6/11/08 DATE: 2/2/09

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

-	Exca	vation	r	Sampling	-	<u> </u>	r	Field Material Desc			
METHOD EXCAVATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
L-M		0.0-	0.10	TP32-01 0.00-0.10 m PID=0 Jar, SB TP32-02 0.10-0.30 m PID=0 Duplicates: TP32-102, TP32-202 Jar, 2 x SB			SC SC	Clayey SAND, fine to coarse grained, dark brown, low plasticity fines. As above, orange/ brown, trace of fine to coarse gravel.			Inferred topsoil. Cemented zones up to 100mm in size. Gravel is inferred quartz.
		0.5 —	0.50	PP 0,30 m >500 kPa TP32-03 0,50-0.80 m		0. D.	CH	Gravelly Sandy CLAY, high plasticity, red/ brown, fine to coarse gravel, fine to coarse sand.			Calcareous
м		1.0-	1.10	PID=0 Jar, SB, LB				Approximately 30% COBBLES, grey mottled pale red, inferred sandstone up to 200mm in size, in a matrix of Gravelly Clayey SAND, fine to coarse grained, orange / brown, high plasticity fines, fine to medium gravel.	D - M		
		1.5		TP32-04 1.20-1.40 m PID=0 Jar, SB			СН	Approximately 80% GRAVEL, COBBLES and BOULDERS up to 300mm in size, grey mottled pale red inferred sandstone in a matrix of Sandy CLAY, high plasticity, brown, fine to coarse sand.			
		2.0-						TEST PIT DISCONTINUED @ 1.60 m GROUNDWATER NOT ENCOUNTERED PRACTICAL REFUSAL @ 1.60m			
		2.5					3	*			142

P		ECT:	CEN She : She	NTREX EEP HILI 661006	_ PORT INVESTIGA	TION	1	SURI INCL	REPORT RDS: 616712.0 m E 6209958.0 m N MGA94 53 FACE RL: 8.70 m DATUM: AHD INATION: -90° E DIA: 150 mm HOLE DEPTH: 13.50 m		SHEE DRIL CON LOG	OREHOLE: BH01 ET: 1 OF 3 L RIG: SONIC TRACTOR: BOART LONGYEAR GED: MH DATE: 23/10/08 CKED: L DATE: Sol () o M
_		-	illing	1	Sampling	1	-	1	Field Material De	200, 52 (Carl)	1. Y. C.	
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
Sonic			1-	8.70 0.20 8.50 1.50 7.20	BH01-01 DS 0.00-0.20 m 0A 0.00 m PID = 0.4 ppm BH01-02 DS 0.40-0.50 m 0A 0.40 m PID = 0.2 ppm BH01-03 DS 1.50-1.80 m			SC SC SM	Clayey SAND, fine to coarse grained, brown, low plasticity fines trace of fine to coarse grained gravel. Clayey SAND, fine to coarse grained, pale brown/white, low plasticity fines, trace of fine to coarse gravel. Silty SAND, fine to coarse grained, white, low plasticity fines.	D		Trace of gravel up to 10mm in size, Recovered as extremely weathered rock , fine to coarse granite and quartz gravel up to 70mm in size, Mica flecks in a matrix of Clayey Sand.
GAP 5_02 LIB GLB Log GAP NON-CORED FULL PAGE 087691006 - CENTREX SHEEP HILL CPU < <drawingfliev> 30/01/2008 12:41 8.1.011</drawingfliev>				1.90	0A 1.50 m PID = 0.1 ppm			SC	Clayey SAND, fine to coarse grained, pale brown/ white, tow plasticity fines, trace of fine to coarse gravel. For Continuation Refer to Sheet 2			Recovered as extremely weathered rock, fine to coarse granite and quartz gravel up to 70mm in size. Mica flecks in a matrix of Clayey Sand.
GAP 5_02 LIE				hydr	ogeological purposes	s only	/, with	out af	conjunction with accompanying notes and abbreviations tempt to assess geotechnical properties or possible cont nation are for information only and do not necessarily ind of the properties stated.	aminati	on. A	ny reference to

PF LC	IENT OJE CAT B NO	CT: ION:	C S S	ENTI HEEI HEEI 8766	P HILL P HILL 1006		VEST	COORDS: 616712.0 m E 620 IGATION SURFACE RL: 8.70 m DATU INCLINATION: -90° HOLE DIA: 150 mm HOLE D	M: AH	łD		CONTRACTOR: BOART LONG LOGGED: MH DAT CHECKED: L DAT	GYEAR TE: 23/10/08 TE: 341,0°
-			D	rilling				Field Material Descriptio	L	INTE	ERRED	Defect Information	
METHOD	WATER	TCR	ROD (SCR)	RECOVERED	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STR Is ₍₅	ENGTH NGTH NPa S-n2 S±33	& Additional Observations	AVERAG DEFEC SPACIN (mm) 2 8 8 8
					12	<u>2.00</u> 6.70	++++	Continuation of Sheet 1 GRANITE, fine to coarse grained, layered, pale grey, white quartzite inclusions (up to 100mm) and veins of Mica Schist, some orange staining.	DW			2.00-7.60: Inferred drill breaks approx. every 100mm, 2,0 to 7.6m.	
		100			3		+ + + + + + + + + + + + + + + + + + +					4.00-4.50: Recovered as subangular gravel, inferred highly fractured zone.	
A CONTRACT OF		100		「「「「「「」」」を見ていている。	6 	7.60 1.10 8.00	+ + + + + + + + + + + + + + + + + + +	Gravelly SAND, pale brown, Quartz inclusions up to 5mm. Inferred RS/EW GRANITE	RS				
		85		and the state of the state	8	8.60 0.10	+++++	GRANITE GRANITE, fine to coarse grained, layered pale grey, white, quartzite inclusions up to 100mm and veins of mica schist, with some orange staining. SCHIST, fine to coarse grained, layered, dark grey, occasional quartzite veins up to 5mm, trace of orange staining.	DW SW			8.00-8.60: Inferred drill breaks approx. every 100mm. 8.60-9.00: X, 50-55°, St, Sm, Cn 9.00-10.00: J, 90°, St, Sm, Cn	

P	LIEN ROJE OCA	T: ECT: FION:	C S S	ENTI	P HILL I P HILL		₩EST	COORDS: 616712.0 m E 6209 IGATION SURFACE RL: 8.70 m DATUM INCLINATION: -90° HOLE DIA: 150 mm HOLE DI	I: A⊢	ID	N MGA94	CONTRACTOR: BOART LONG [、] LOGGED: MH DATE	
		0.					ľ	Field Material Description	_	1. 10	.00 111	Defect Information	
METHOD	WATER	TCR	ROD (SCR)	RECOVERED	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	HERING	STR	erred ENGTH MPa	DEFECT DESCRIPTION	AVERAGE DEFECT SPACING (mm)
GAP O_UZ LIDULE LOG GAP CORED BURFINLE VOTO1006 - CENTREX STEEP Full, GPU *CUTIMINGPIREY 3/0/1/2009 12:32, 81,011 Softee Steep Ste		60				13.50		SCHIST, fine to coarse grained, layered, dark grey, occasional quartzite veins up to 5mm, trace of orange staining.	SW			10,60-10,80: X, 50-55°, St, Sm, Cn 11,00-11,50: J, 50-55°, Pl, Sm, Sn 12,00-12,40: J, 50-55°, Pl, Sm, Sn	
200 0 00				ļ	hydro	geologia	cal purp	chole must be read in conjunction with accomp poses only, without attempt to assess geotechr s or potential contamination are for information of the propertie	nical only	prope and	erties or p	possible contamination. Any reference to	INT FN. F02: RL:

â	\	
Ð	Golder	es

GAP 8_02 LB GLB Log GAP NON-CORED FULL PAGE 087681005 - CENTREX SHEEP HILL GPJ - «DrawingFile>> 30/01/2009 12.41 3.1.011

REPORT OF BOREHOLE: BH02

CLIENT: CENTREX PROJECT: SHEEP HILL PORT INVESTIGATION LOCATION: SHEEP HILL JOB NO: 087661006

COORDS: 616476.0 m E 6209979.0 m N MGA94.53 SURFACE RL: 8,91 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 13,00 m

SHEET: 1 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR

CHECKED:

LOGGED: MH DATE: 23/10/08 DATE: 30/1/09

-		Dril	ling		Sampling				Field Material Desc	riptio	on		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
. Sonic METH	PENE	WATE	Liddy 0	0.80 8.81	BH02-01 DS 0.00 m PID = 0 ppm BH02-02 DS 0.40 m PID = 0 ppm BH02-03 DS 0.90-1.20 m 0A 0.90 m PID = 0 ppm BH02-03 DS 0.90-1.20 m 0A 0.90 m PID = 0 ppm				Clayey SAND, fine to medium grained, brown, low plasticity fines, lace of Gravel, Clayey SAND, fine to coarse grained, pale brown, low plasticity fines, trace of fine to coarse Gravel. Gravelly Sitly SAND, fine to coarse grained, grey/green, fine to coarse Gravel, low plasticity fines.	MOIST	DENSI	OBSERVATIONS	
				ТР	is report of borebole		the rec		conjunction with accompanying notes and abbreviations. It	bor		propored for	
				hvdr	ogeological purposes o	∿ותכ	/, witho	ut at	tempt to assess geotechnical properties or possible contam ination are for information only and do not necessarily indica of the properties stated.	inati	on A	ny reference to	a

{ 	PRC		: CT: ON:	C SI	ENTI HEEF	P HILL I P HILL		IVEST	COORDS: 616476_0 m E 620 IGATION SURFACE RL: 8,91 m DATUI INCLINATION: -90° HOLE DIA: 150 mm HOLE D	Л: А⊦	łD	I MGA94	CONTRACTOR: BOART LONG LOGGED: MH	YEAR : 23/10	
L				D	rilling				Field Material Descriptio	1		fr	Defect Information		
METHOD	METHOD	WATER	TCR	ROD (SCR)	RECOVERED	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STR Is _t	ERRED ENGTH	& Additional Observations	DEI SPA (n	RAGE FECT (CING nm)
GAP 5_02 LIB GLB Log GAP CORED BOREHOLE 057651005 - CENTREX SHEEP HILL GPJ < <drawingfile> 30,012,009 12,32 8,1,011 Sonic:</drawingfile>		4	50				-	+ + + + + + + + + + + + + + + + + + +	Continuation of Sheet 1 GRANITE, fine to coarse grained, layered, pale grey, white, gravel-sized quartzite inclusions, veins of mica schist, some orange staining.	DW			 2.00-4.10: Recovered as subangular Gravel and Cobbles up to 100mm in size, inferred, highly fractured zone. 4.20-4.30: J, 90°, St, Sm, Cn 4.30-4.40: Recovered as subangular Gravel and cobbles up to 70mm in size, inferred, highly fractured zone. 4.40-4.50: J, 90°, St, Sm, Cn 4.50-4.60: X, 80-85°, St, Sm, Cn 4.70-4.80: J, 90°, St, Sm, Cn, Drill break at 4.7m. 4.80-5.10: J, 90°, St, Sm, Cn 5.10-7.00: Possible drill breaks or larger, fractured zone from 5.1m to 7.0 m. 7.00-7.10: Highly fractured zone. 7.10-7.40: Recovered as subangular Gravel and Cobbles up to 100mm in size. 8.00-10.50: Recovered as subangular Gravel and Cobbles up to 100mm in size, possible inferred, highly fractured zone. 8.00-10.50: Recovered as subangular Gravel and Cobbles up to 100mm in size. 		
GAP 5_UA					g	hydrog	geologic	al purp	nole must be read in conjunction with accomp oses only, without attempt to assess geotech or potential contamination are for informatior of the propertie	nical only	orope and o	rties or p	possible contamination. Any reference to	JINT FN	N. F02a RL3

- Allower GAP 8_02 LIB.GLB Log GAP CORED BOREHOLE 087681006 - CENTREX SHEEP HILL GPJ <<Dn

	(T)	G	ol	der ciat	tes							R	E	PORT OF BOREHOLE: BH02
	PR LO		Г: .CT: 10N:	C S	ENTI HEEI HEEI	REX P HILL P HILL		NVEST	IGATION SL	DORDS: 616476 JRFACE RL: 8.9 CLINATION: -90	91 m DATU№)°	I: AH	D			CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 23/10/08
	JO	BNC): 	_	3766	_			HC	DLE DIA: 150 m			: 13	n 00.	1	CHECKED: H DATE: 30/1/09
	_		_	D	rilling		T			Field Materia	al Description				_	Defect Information
	METHOD	WATER	TCR	RQD (SCR)	RECOVERED	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL M	MATERIAL DES	CRIPTION	Ĥ	STR Is ₁₅		iTH Pa	& Additional Observations SPACING
GAP 8_02 LIB.GLB Log GAP CORED BOREHOLE 087651006 - CENTREX SHEEP HILL GPJ < <drawingflex> 30/01/2009 12:32 8/ 011</drawingflex>	Sonic		33				<u>10.50</u> -1.69 -4.09	$ + + + \frac{1}{4} + + + + + + + + + + + + + + + + + + +$	SCHIST, fine to dark grey. GRANITE, fine pale grey, white inclusions, vein- orange staining	to coarse graine , gravel-sized qu s of mica schist, HOLE @ 13,00 H	d, layered, Jartzite some	DW				11.20-11.40: J, 50-55°, St, Sm, Cn 11.40-12.00: Recovered as subangular Gravel and Cobbles up to 100mm in size, possible inferred, highly fractured zone. 12.60-13.00: Mica content increasing with depth.
GAP 8_02 LIB.GLB] g					amination are for		only a	ind d			abbreviations. It has been prepared for possible contamination. Any reference to accessarily indicate the presence or absence GAP gINT FN. F02a RL3

CONTRACTOR OF	-		
100			
	Col	dox	
77	GUI	rić-i	
A	sso	CIA	tes

REPORT OF BOREHOLE: BH03

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

COORDS: 616334.0 m E 6209804.0 m N MGA94 53 SURFACE RL: 8.05 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 10.30 m SHEET: 1 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 24/10/08 CHECKED: L DATE: 20/1/09

			Dri	lling		Sampling				Field Material Desc	1.1.2			_
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
GAP 8_02 LIBIGLE Log GAP NON-CORED FULL PAGE 087851005 - CENTREX SHEEP HILL GPJ < <drawingfile>> 3001/2009 12/41 8/1 011</drawingfile>	Senic				8.05 0.20 7.85 6.15 6.15	SPT 0.00-0.45 m 8, 15, 14 N=29 BH03-01 DS 0,00-0.20 m 0A 0,00 m PID = 0 ppm BH03-02 DS 0,40-0,60 m 0A 0,40 m PID = 0 ppm SPT 2.00-2.30 m 23, 15/150mm HB N>15 BH03-04 DS 2.00-2.20 m 0A 2.00 m PID = 0 ppm SPT 2.00-2.30 m 2.00-2.20 m 0A 2.00 m PID = 0 ppm	mus	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SP CH	Clayey SAND, fine to coarse grained, brown, low plasticity fines, trace of gravel up to 5mm in size. Clayey SAND, fine to coarse grained, red brown, low plasticity fines. Sandy CLAY, high plasticity, red brown, fine to coarse sand. Sandy CLAY, high plasticity, red brown, fine to coarse sand.	D	beer	Inferred extremely weathered granite with Mica flacks, trace of quartz gravel up to 40mm in size.	
GAP 8					geotec	hnical properties or p	oten	tial con	ntami	nation are for information only and do not necessarily indica of the properties stated.	ite th	e pre	sence or absence GAP gINT FN, F0 R	1a

(7		G	ol	der cia	too						RI	EPC	ORT OF BOREHOLE: I	ЗΗ	0	3
PF LC	IENT OJE CAT B NC	CT: CT:	C S S	ENT	REX P HILL P HILL		VVEST	COORDS: 616334.0 m E 620 FIGATION SURFACE RL: 8.05 m DATUI INCLINATION: -90° HOLE DIA: 150 mm HOLE D	M: A	HD			94 53	SHEET: 2 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LONG LOGGED: MH DATE CHECKED: JL DATE	: 24/	10/0	
			D	rilling				Field Material Descriptio	n			_		Defect Information			
METHOD	WATER	TCR	RQD (SCR)	RECOVERED	0 (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ST	IFEF REI S(50)	NGT MPa	H	DEFECT DESCRIPTION & Additional Observations	D	EFE PAC (mr	AGE ECT ING n)
		100				7.00 1.05 8.00		Continuation of Sheet 1 GRANITE, fine to coarse grained, layered, pale grey, white, gravel-sized quartzite inclusions, veins of mica schist, some orange staining.	DW				Cobl fract	-8.00: Recovered as subangular Gravel and bles up to 100mm in size, inferred, highly ured zone.			
Sonic		20		A RATING RATE	8 9 	0.05	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Inferred extremely low to high strength, 8_0 to 10.3 m.	EW				8.00- zone	-10.30: Poor recovery, inferred highly fractured b. Inferred extremely low to high strength.			
				g	This hydro	aeoloaic	al puro	hole must be read in conjunction with accomp poses only, without attempt to assess geotech s or potential contamination are for information of the propertie	nical nonly	prop and	pertie	as o	r possit	ble contamination. Any reference to	INT F	=N.	F02a RL3

(Ĵ)	G	ol	der ciai	íes					E: BH03
P L	ILIEN ROJE OCAT	T: ECT: TION:	C S S	ENTI HEEI HEEI	REX		NVEST	COORDS: 616334_0 m E 620 IGATION SURFACE RL: 8_05 m DATUI INCLINATION: -90° HOLE DIA: 150 mm HOLE D	M: AHD	SHEET: 3 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LOGGED: MH CHECKED:	LONGYEAR DATE: 24/10/08 DATE: こっししゃう
			D	rilling				Field Material Descriptio	n	Defect Information	
METHOD	WATER	TCR	RQD (SCR)	RECOVERED	-	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION		DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm)
		20				10.30		END OF BOREHOLE @ 10,30 m TARGET DEPTH STANDPIPE INSTALLED			
				g	hvdroo	reologia	al purc	or potential contamination are for information or potential contamination are for information of the propertie	nical properties or pos only and do not nece	ssible contamination Any reference to	GAP gINT FN. F02a RL3

A.0	(
(Δ)	Golder
U P	ssociates

REPORT OF BOREHOLE: BH04

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

GAP 8_02 LIB GLB Log GAP NON-CORED FULL PAGE 087681005 - CENTREX SHEEP HILL GPJ << DrawingFiles> 300012009 12:41 8:1011

COORDS: 616329.0 m E 6209601.0 m N MGA94 53 SURFACE RL: 17,30 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 18.00 m SHEET: 1 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 26/10/08 CHECKED: 1/2 DATE: 30(+)09

		Dril	ling		Sampling			_	Field Material Desc	ripti	on	
METHOD PENETRATION	RESISTANCE	WATER	OEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
Sonic ·			1	0.50 16.80	SPT0.00-0.45 m 11, 14, 33 N=47 BH04-01 0.00-0.20 m 0A 0.00 m PID = 0 ppm BH04-02 0.50-0.80 m 0A		× × ×	SM	Clayey SAND, fine to coarse grained, pale brown, low plasticity fines, with Gravel.	D		Gravel up to 75mm in size. Inferred extremely weathered micacious schist, quartz & granite gravel up to 50mm in size,
			-2		0.50 m PID = 0 ppm BH04-03 1.50-1.60 m 0A 1.50 m PID = 0 ppm		x x x x		For Continuation Refer to Sheet 2			
			3									-
			4-									
			5-									
			6									
			7-									
			8									
			9-									
			10	Th hydro geotech	is report of borehole n ogeological purposes nical properties or po	nust only tent	be rea , witho ial con	ad in ut att tamii	conjunction with accompanying notes and abbreviations. I empt to assess geotechnical properties or possible contarr nation are for information only and do not necessarily indica of the properties stated.	: has inationation te th	been on. A e pres	prepared for ny reference to sence or absence GAP gINT FN, F01a RL3

		DJE CAT	CT: ION:	C S S	ENT HEE HEE	P HILL P HILL 1006		√VEST	COORDS: 616329.0 m E 620 IGATION SURFACE RL: 17.30 m DATU INCLINATION: -90° HOLE DIA: 150 mm HOLE D Field Material Description	IM: A	HD	N MGA94	CONTRACTOR: BOART LONG LOGGED: MH DATE	
a second second	METHOD	WATER	TCR	ROD (SCR)	RECOVERED	DEPTH (matres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STF	ERRED RENGTH	DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm)
						0	<u>2.00</u> 15.30		Continuation of Sheet 1 SCHIST, fine to coarse grained, layered, dark grey, occasional quartzite inclusions, some veins, trace of orange staining.	sw.			2.00-2.40: Recovered as subangular Gravel and Cobbles, possible drill breaks or highly fractured rock. 2.40-2.60: J, 85-90°, St, Sm, Cn 2.60-3.60: Recovered as subangular Gravel and Cobbles, possible drill breaks or fractures.	
81,011			100			3	<u>4.50</u> 12.80		GRANITE, fine to coarse grained, layered, pale grey, pink, white, quartzite inclusions, veins of micaceous schist, some orange staining.	DW		and the second se	3.60-3.80: J, 55-60°, St, Sm, Cn 3.80-4.00: J, 55-60°, St, Sm, Cn 4.00-4.10: X, 90°, St, Sm, Cn 4.10-4.20: X, 90°, St, Sm, Sn 4.20-4.40: X, 90°, St, Sm, Sn 4.50-5.20: Recovered as subangular Gravel and Cobbles, possible drill breaks or highly fractured rock. 5.20-5.60: Inferred drill breaks every 50mm, 5.2m to 5.6m.	
EP HILL GPJ << DrawingFile>> 30/01/2009 12/3	SOULD		60		ALC: ALLOWING THE	- 6_ - 7_ -	-	+ +					5.60-5.80: J, 55-60°, St, Ro, Cn 5.80-6.10: Inferred drill breaks every 50mm, 5.8m to 6.1m. 6.10-6.50: Recovered as subangular Gravels and Cobbles, inferred fractured zone. 6.50-6.80: J, 50°, St, Ro, Cn 6.80-7.50: Inferred drill breaks, or highly fractured zone.	
GAP 8_02LIB.GLB Log GAP CORED BOREHOLE 007661006 - CENTREX SHEEP HILL GPJ << DrawingFlass 3001/2009 12:32 8:1,011			100			- 8- - 9- -	-	+ + + +	*				 7.50-7.60: J, 55-60°, St, Ro, Cn 7.60-7.80: J, 55-60°, St, Ro, Cn 7.80-8.00: Recovered as subangular Gravel and Cobbles. 8.00-8,20: J, 55-60°, St, Ro, Cn 8.50-9,00: J, 50-55°, St, Ro, Cn 9.00-9.90: Recovered as subangular Gravel and Cobbles, inferred drill break or highly fractured zone. 	
GAP 8_02 LIB.GLB L			100		g	hydrog	report o	al purp	nole must be read in conjunction with accomp oses only, without attempt to assess geotech or potential contamination are for information of the propertie	nical p only :	orope and (tes and a enties or p	oossible contamination. Any reference to	INT FN. F02a RL3

PRC LOC JOB	ATI	ON:	S	HEE	P HILL 1006	PORT		IGATION SURFACE RL: 17,30 m DATL INCLINATION: -90° HOLE DIA: 150 mm HOLE D			00 m	15	′EAR 26/10/08 <u>3<1110 '</u>
ľ	1		D	rilling		1		Field Material Description	2			Defect Information	
METHOD	WATER	TCR	ROD (SCR)	RECOVERED	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STRI Is _{ist}	RRED ENGTH MPa	& Additional Observations	AVERAC DEFEC SPACIN (mm)
Soric	4	00				14.00 3.30 15.00 2.30	++++++++++++++++++++++++++++++++++++++	GRANITE, fine to coarse grained, layered, pale grey, pink, white, quartzite inclusions, veins of micaceous schist, some orange staining. SCHIST, fine to coarse grained, layered dark grey, occasional quartzite inclusions, some trace of orange staining. GRANITE, fine to coarse grained, layered pale grey, pink, white, quartzite inclusions, veins of micaceous schist, patches of orange staining. END OF BOREHOLE @ 18.00 m TARGET DEPTH STANDPIPE INSTALLED	EW			 10,30-10,50: X, 90°, St, Ro, Cn 10,50-10,70: X, 90°, St, Ro, Sn 11,00-12,00: Recovered as subangular Gravel and Cobbles, possible drill breaks. 12,00-12,10: J, 50-55°, St, Ro, Cn 12,30-13,80: Inferred drill breaks, or highly fractured zone. 13,80-14,00: X, 90°, St, Sm, Sn 14,00-14,20: J, 55°, St, Ro, Cn 14,40-14,40: X, 90°, St, Sm, Cn 14,40-14,50: X, 90°, St, Sm, Cn 15,00-15,20: X, 90°, St, Sm, Cn 15,50-16,50: Drill breaks and possible subhorizontal joints approx. 50mm spacings, 16.60-16,80: X, 90°, Un, Ro, Cn 17,20-17,30: X, 85°, Un, Ro, Ct 17,50-17,80: Extently weathered micacious schist in a sandy zone with trace of low plasticity fines, trace of quarts gravel, 17,80-18,00: J, 50-55°, St, Ro, Cn 	

	(Z		Go	olde	r				REPORT	O	FΒ	OREHOLE: BH05
	PF LC	IEN ROJE DCAT	T: ECT: TON:	CEN She She	ITREX	L PORT INVESTIGAT	101	J :	SURI NCL	RDS: 616497,0 m E 6209493,0 m N MGA94 53 ^F ACE RL: 14,62 m DATUM: AHD NATION: -90° E DIA: 150 mm HOLE DEPTH: 15,00 m		DRIL CON LOG	ET: 1 OF 3 L RIG: SONIC TRACTOR: BOART LONGYEAR GED: MH DATE: 28/10/08 CKED: L DATE: 36 () 09
ſ		-	Dri	lling		Sampling		ľ		Field Material Des	script	ion	
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
GAP 8_02 LIB.GLB Log GAP NON-CORED FULL PAGE 087681006 - CENTREX SHEEP HILL GPU < <drawhagfile>> 30/012009 12:41 8:1 011</drawhagfile>	Sonic				14.62 0.20 14.42	SPT 0.00-0.45 m 6, 13, 25 N=38 BH05-01 0,00-0,20 m OA 0,00 m PID = 0 ppm BH05-02 0,40-0,60 m OA 0,40 m PID = 0 ppm BH-05-03 0,80-1,00 m OA 0,80 m PID = 0 ppm		* * *	SC. SM	Clayey SAND, fine to coarse grained, brown, low plasticity fines, with subangular gravel up to 15 mm in size. Silly SAND, fine to coarse grained, grey/ green, with gravel.			Inferred extremely weathered micacious schist, quartz & granite gravel up to 30mm in size.
GAP 8_0					geotech	nical properties or po	tent	ial con	tamir	empt to assess geotechnical properties or possible containation ation are for information only and do not necessarily indic of the properties stated.	minati ate th	on. A le pres	ny reference to sence or absence GAP gINT FN. F01a RL3

Unite Defect Hormation Defect Hormation 00 100 100 00	Pf LC		ECT: FION:	S S	HEE		PORTI	NVEST	COORDS: 616497,0 m E 620 IGATION SURFACE RL: 14,62 m DATL INCLINATION: -90° HOLE DIA: 150 mm HOLE D	JM: A	HD		453 DRILL RIG: SONIC CONTRACTOR: BOART LONG LOGGED: MH DATE CHECKED: H DATE	: 28	/10/
Open Start Start				D	rilling				Field Material Description	n			Defect Information	_	-
100 2 100 3 100 3 100 3 100 3 100 3 100 3 100 3 100 3 100 3 100 3 100 3	METHOD	WATER	TCR	RQD (SCR)	RECOVERED	_	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ST Is	IGTH MPa	& Additional Observations	D	PAC (mr
8 7.80-7.90: Inferred drill breaks. 8 8.00-8.30: X, 70-75°, St, Sm, Cn 8.30-8.40: X, 65-70°, St, Sm, Ct 8.30-8.40: X, 65-70°, St, Sm, Ct 8 8.70-9.00: X, 90°, St, Sm, Ct	Some		100				6.00		SCHIST, fine to coarse grained, layered dark grey, occasional quartize inclusions up to 50mm, quartzite veins up to 5mm width, trace of granite inclusions.	DW			breaks every every 200mm, 1.0m and 3,0m at breaks subangular Gravel and Cobbles up to 100mm recovered. 2,30-2,40: X, 85-90°, St, Sm, Sn 2,50-2,60: X, 85-90°, St, Sm, Sn 2,90-3,00: X, 85-90°, St, Sm, Sn 3,40-3,50: X, 85-90°, St, Sm, Sn 3,40-3,50: X, 85-90°, St, Sm, Sn 3,80: Possible joint or drill break, 3,80: Possible joint or drill break, 3,80: A,00: Inferred drill break, 4,60: Inferred drill break, 4,60: Inferred drill break, 4,60: Inferred drill break, 4,60: S, 80-85°, St, Sm, Cn 5,00-5,30: X, 80-85°, St, Sm, Cn 5,00-5,40: J, 90°, St, Sm, Cn 5,40-5,50: Inferred drill break, 5,50-6,00: X, 85-90°, St, Sm, Cn 6,00: Inferred drill break, 6,00-6,30: X, 85-90°, St, Sm, Cn 6,30: Inferred drill break, 6,70-7,00: X, 70-75°, St, Sm, Sn 7,00-7,30: X, 70-75°, St, Sm, Sn	Provide Management and	
					E. DAL STATE	-							7.80-7.90: Inferred drill breaks. 8.00-8.30: X, 70-75°, St, Sm, Cn 8.30-8.40: X, 65-70°, St, Sm, Ct 8.40-8.60: Inferred drill breaks. 8.70-9.00: X, 90°, St, Sm, Ct		

(Ĵ	9	G	ol	der cia	toc					RE	PORT OF BOREHOLE: I	3H05
P L	LIEN ROJE OCAT	ECT: TON:	C S S	ENT HEE HEE	REX		INVEST	COORDS: 616497,0 m E 6209 FIGATION SURFACE RL: 14,62 m DATU INCLINATION: -90° HOLE DIA: 150 mm HOLE D	IM: A	HD		CONTRACTOR: BOART LONG LOGGED: MH DATE	YEAR : 28/10/08 : उद्दे (देव्य
			D	rilling	ļ			Field Material Description	1			Defect Information	
METHOD	WATER	TCR	ROD (SCR)	RECOVERED	DEPTH (metres)	DEPTI- RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STF Is _c	ERRED ENGTH ₀ MPa ° - ₀ ♀ √ ≥ ± ≶ ₫	& Additional Observations	AVERAGE DEFECT SPACING (mm)
Sonic		100				15.00		SCHIST, fine to coarse grained, layered, dark grey, occasional quartzite inclusions, quartzite veins up to 5mm width.	DW			10.00-10.40: X, 90°, St, Sm, Ct 10,40-10,50: Inferred drill break, 10.90-11,00: Inferred drill breaks, 10.9m to 11.0m, subangular Gravel and Cobbles, 11.00-11,30: X, 90°, St, Sm, Cn 11,30: Inferred drill break at 11.3m, 11,30-12,00: X, 90°, St, Sm, Ct 12,00-13,00: X, 85°, St, Sm, Ct 13,10-13,20: Inferred drill breaks. 13,20-13,80: J, 50-55°, St, Sm, Ct 13,90: Inferred drill break, 14,30: Inferred drill break, 14,80: Inferred drill break, 14,80: Inferred drill break, 14,80: Inferred drill break,	
				ge	nyaroa	leolodic	ai durdo	or potential contamination are for information or potential contamination are for information of the properties	ical pi only a	roper nd de	ties or no	ossible contamination. Any reference to	NT FN. F02a RL3

GAP 8_02 LIB.GLB Log GAP CORED BOREHOLE 087661006 - CENTREX SHEEP HILL GPJ <<DRMMDFIA>> 3001/2009 12:32 8:1011

CLIEN PROJE LOCAT JOB N	T: ECT: FION: O:	CEN SHE SHE 0876	ICREX EP HILI EP HILI 661006	- PORT INVESTIGAT	TON	SU INC	ORDS: 616584.0 m E 6209704.0 m N MGA94 53 RFACE RL: 20.54 m DATUM: AHD LINATION: -90° -E DIA: 150 mm HOLE DEPTH: 21,50 m		SHE DRIL CON LOG	OREHOLE: BH06 ET: 1 OF 4 L RIG: SONIC TRACTOR: BOART LONGYEAR GED: MH DATE: 21/10/08 CKED: HL DATE: 30(1)0
METHOD PENETRATION RESISTANCE	Dril	DEPTH (metres)	DEPTH RL	Sampling SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG PLOCE EVMDOL	Field Material Des	- 12 13 L M 14 14 14	CONSISTENCY 0	STRUCTURE AND ADDITIONAL OBSERVATIONS
Sonic			2.90 2.90 19.64 19.64 2.90 19.64 19.64 10.64 17.54 3.50 17.54 4.10 16.44 5.50 15.54 5.50 15.04	BH06-01 0.00-0.10 m OA 0.00 m PID = 0 ppm BH06-02 0.30-0.50 m OA 0.30 m PID = 0 ppm BH06-03 0.80-0.90 m OA 0.80 m PID = 0 ppm	X 50 X X X X X X X X X		Clayey SAND, fine to medium grained, brown, low plasticity fines, trace of Gravel up to 10 mm in size. SAND, fine to medium grained, pale brown, trace of low plasticity fines. Clayey Gravelly SAND, fine to coarse grained, pale brown, fine to coarse Gravel, low plasticity fines. Sandy GRAVEL, fine to coarse grained, pale brown, fine to coarse Sand, trace cobles up to 80 mm. Granite & quartz gravel, mica flecks. Silly SAND, fine to coarse grained, grey/ green, with granite & quartz gravel up to 30 mm.	1		Inferred extremely weathered rock, fine to coarse granite & quartz gravel in a matrix of clayey sand with mica flecks. Inferred extremely weathered micaceous achist.

dis-ma	
CALCO	dow
TA SEO	niatos
17000	CTOWE 19

GAP 8_02 LIB/GLB Log GAP NON-CORED FULL PAGE 087661006 - CENTREX SHEEP HILL GPJ <<DrawingFile>> 30/01/2009 12:42: 8:1.011

REPORT OF BOREHOLE: BH06

CLIENT: CENTREX PROJECT: SHEEP HILL PORT INVESTIGATION LOCATION: SHEEP HILL JOB NO: 087661006

COORDS: 616584.0 m E 6209704.0 m N MGA94.53 SURFACE RL: 20.54 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 21,50 m

SHEET: 2 OF 4 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH CHECKED: K

DATE: 21/10/08 DATE: 30 1 109

		Dri	lling		Sampling	_			Field Material Desc	ripti	on		-
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
Sonic			10					CL	Sandy CLAY, low to medium plasticity, green/ brown, fine to coarse Sand, with Gravel.	D		Inferred extremely weathered micaceous schist.	10 I I I I I I I I I I I I I I I I I I I
			11	<u>9.54</u>				СН	Sandy CLAY, medium to high plasticity, brown, fine to coarse Sand, with gneiss/schist Gravel up to 80mm, trace fine quartz gravel.	м		Inferred extremely weathered gneiss / schist.	3
									For Continuation Refer to Sheet 3				
			20	Thi hydro geotech	s report of borehole m geological purposes o inical properties or pot	l ust only tent	be rea , witho ial con	id in ut att tarnir	conjunction with accompanying notes and abbreviations. It empt to assess geotechnical properties or possible contam nation are for information only and do not necessarily indica of the properties stated.	t has iinatio te the	been on. Ai e pres	prepared for ny reference to sence or absence GAP gINT FN. F01a RL3	a
-			_			-		-	or the properties stated.			RL	3

	PR LO	CT: ION:	C S OI	ENT HEE HEE	P HILL 1006		UVEST LOG CRAPHIC	COORDS: 616584.0 m E 62 TIGATION SURFACE RL: 20.54 m DAT INCLINATION: -90* HOLE DIA: 150 mm HOLE Field Material Description ROCK / SOIL MATERIAL DESCRIPTION	UM: A	HD I: 2	N M	/IGA9	CONTRACTOR: BOART LONG LOGGED: MH DATE CHECKED: 1/2 DATE Defect Information	YEAR : 21/1 : 30 (AVI DE SP (
GAP 8_02 LIB GLB Log GAP CORED BOREHOLE 007661006 - CENTREX SHEEP HILL GPJ < <drawningfile>> 30/01/2009 12:32 8.1.011</drawningfile>	Sonic	30 55 100 95		ge	nyarog	eologica	DURDO	Continuation of Sheet 2 SCHIST, fine to coarse grained, layered dark grey, occasional quartzite inclusions up to 50mm in size and veins up to 5mm width.	nical pi only a	ope nd c	ortie	and al	assible contamination. Any reference to		J. F02a

PF LC		T: ECT: FION:	5	CENT SHEE SHEE			NVEST	IGATION	SURFACE F	616584.0 m E 6/ RL: 20,54 m DA IN: -90° 150 mm HOLE	TUM: A	HD	NM	IGA94	CONTRACTOR: BOART LONGY LOGGED: MH DATE:	
		_	C	rilling T		1			Field I	Material Descript	tion	_			Defect Information	
METHOD	WATER	TCR	ROD (SCR)	RECOVERED	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / S	OIL MATERIAL	_ DESCRIPTION	WEATHERING	STF Is	REN 50) N	RED IGTH MPa	DEFECT DESCRIPTION & Additional Observations	AVERAC DEFEC SPACIN (mm)
Sonic		100			20	21.50		dark grey,	ne to coarse gr occasional qua trace of orange	rtzite inclusions	sw				20.00-20.10: Recovered as subangular Gravel and Cobbles, inferred fractured zone, 20,10-20.80: J, 90°, Un, Sm, Cn 20.80-21.00: X, 70-75°, PI, Sm, Cn 21.00-21.30: X, 70-75°, PI, Sm, Cn 21.30-21.40: X, 70-75°, PI, Sm, Cn	
					22-	-0.96		TARGET D	OREHOLE @ 2 DEPTH PE INSTALLED						21.40-21.50: Recovered as subangular Gravel and Cobbles, inferred fractured zone or multiple drill breaks.	
					23-											
					24											
					28										~	
					riyaroye	SOIDOICS	i purpo	ses oniv, witi	nout attempt to	assess deotect	nical pro only ar	per d do	tipe	or no	breviations. It has been prepared for ssible contamination. Any reference to essarily indicate the presence or absence GAP gIN	T FN. F02

	SOUND FOR THE REAL	0004110100	
	<< DrawineFilass	- unit officered	
	LOG GAP CORED BOREHOLE 087661006 - CENTREX SHEEP HILL		
1	GLB	L	

CLIENT PROJEC LOCATI JOB NO	CT: ON:):	SHE SHE 0876	NTREX EEP HILI EEP HILI 361006		ΓΙΟΝ	SUF INCI	DRDS: 616089.0 m E 6210042.0 m N MGA94 53 FACE RL: 7,27 m DATUM: AHD .INATION: -90° E DIA: 150 mm HOLE DEPTH: 11.00 m			EET: 1 OF 2 LL RIG: SONIC NTRACTOR: BOART LONGYEAR GGED: MH DATE: 29/10/ ICKED: DATE: 30(1)
7	Drill	ing		Sampling		1-	Field Material De			
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			3.00 4.27 3.50 3.77 4.00 3.27 4.80 2.47 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SPT 0.00-0.45 m 4, 8, 10 N=18 BH07-01 0.00-0.20 m 0A 0,00 m PID = 0 ppm BH07-02 1,20-1,40 m 0A 1.20 m PID = 0 ppm BH07-03 1,90-2,00 m 0A 1.90 m PID = 0 ppm SPT 2,00-2,45 m 6, 7, 9 N=16 BH07-04 3,00-3,20 m 0A 3,00 m PID = 0 ppm PP 3,80 m >600 kPa BH07-05 4,00-4,20 m 0A 3,00 m PID = 0 ppm PP 3,80 m =310 kPa SPT 5,00-5,45 m 5,10, 13 N=23 SH07-06 5,80-6,00 m 5,80 m PT 8,00-8,45 m 0, 19, 25 =44		SP CH	Clayey SAND, fine to coarse grained, pale brown, low plasticity fines, trace of Gravel up to 10 mm. Clayey SAND, fine to coarse grained, pale brown, low plasticity fines, with Gravel up to 10 mm. Sandy CLAY, low plasticity, pale brown, fine to coarse Sand. SAND, fine to coarse grained, pale brown, with low plasticity fines. Sandy CLAY, high plasticity, pale brown, fine to coarse Sand. SAND, fine to coarse grained, pale brown, with low plasticity fines. Sandy CLAY, high plasticity, pale brown, fine to coarse Sand. Sandy CLAY, high plasticity, pale brown, fine to coarse Sand.	D	D VSt H D H	Subangular Gravel and Cobbles up to 100mm in size.

REPORT OF BOREHOLE: BH07

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

COORDS: 616089.0 m E 6210042.0 m N MGA94 53 SURFACE RL: 7.27 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 11.00 m SHEET: 2 OF 2 DRILL RIG: SONIC

CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 29/10

CHECKED: A

DATE: 29/10/08 DATE: 30/1/09

,		Dril	ling		Sampling				Field Material Desc	riptic	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL		and the second second	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
20100			10				×···	CL	Silly sandy CLAY, low plasticity, yellow, fine to coarse Sand, trace of Gravel and Cobbles.			Subangular Gravel and Cobbles up to 100mm in size.
5			-11	-3.73			نية د			D	н	
				0.10					END OF BOREHOLE @ 11.00 m TARGET DEPTH STANDPIPE INSTALLED			
			12-									
			-									
			13-									
			1									
			14									
			1									
			15-									
			-									
			-									
	2		17—									
			-									
			18—						-			
			2									
		-	19-									
			-									
			20-	This	report of borehole n	nust	be rea	ad in o	conjunction with accompanying notes and abbreviations. It is assess geotechnical properties or possible contamin	nas b	Deen (prepared for

Golder	
Associates	

REPORT OF BOREHOLE: BH08

CLIENT: PROJECT:

JOB NO:

GAP 8_02 LIB.GLB Log GAP NOW-CORED FULL PAGE 087691006 - CENTREX SHEEP HILL GPJ << DrawingFile>> 30/01/2009 12.42 8.1.011

CENTREX SHEEP HILL PORT INVESTIGATION LOCATION: SHEEP HILL 087661006

COORDS: 615963.0 m E 6209706.0 m N MGA94 53 SURFACE RL: 9,73 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 11,00 m

SHEET: 1 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 30/10/08 DATE: 30/1/09 CHECKED: 4L

-	1		ling		Sampling				Field Material Des	cript	ion	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
Sanic			6	4.00 5.73 5.73 4.73 4.73	SPT 0.00-0.45 m 6, 11, 12 N=23 BH08-01 0,00-0,20 m 0A 0,00 m PID = 0 ppm PP 0,20 m =340 kPa BH08-02 0,40-0,50 m 0A 0,40 m PID = 0 ppm PP 0,50 m =530 kPa 1.80 m PID = 0 ppm PP 1.80 m =550 kPa SPT 2.00-2.45 m 9, 12, 13 N=25 BH08-04 3,50-3,80 m 0A 3,50 m PID = 0 ppm PP 3,80 m =210 kPa BH08-05 4,50-4,80 m 0A 4,50 m PID = 0 ppm PP 3,80 m =210 kPa BH08-05 5,45 m 4, 4, 16 S50 m PID = 0 ppm PP 3,80 m >600 kPa SFT 5.00-5,45 m A, 550 m PID = 0 ppm PP 5,80 m >600 kPa SFT 5.00 m PD = 0 ppm PP 5,80 m >600 kPa SFT 5.00 m PID = 0 ppm PP 5,80 m >600 kPa SFT 5.00 m PID = 0 ppm PF 5,80 m >600 kPa SFT 5.00 m PID = 0 ppm PF 5,80 m >600 kPa			CH	Sandy CLAY, high plasticity, red brown, fine to coarse Sand, trace of Gravel. Clayey SAND, fine to coarse grained, red brown, high plasticity fines, trace of Gravel. Sandy CLAY, high plasticity, red brown, fine to coarse Sand, with Gravel. CLAY, high plasticity, red brown, fine to coarse Sand.	D		With Gravel from 7.0m to 7.5m.
				8.00 F 1.73 S 2	.30 m ID = 0 ppm IPT 8.00-8.30 m 0, 50/150mm HB I>50		->	aL s	Silty Sandy CLAY, low plasticity, yellow, fines, fine to coarse		н	
			10	TIVUIU	Jeological purposes o	niv. '	withou	l in c	onjunction with accompanying notes and abbreviations. It mpt to assess geotechnical properties or possible contam ation are for information only and do not necessarily indicat of the properties stated.	notic	- A-	a second a second se
										-		RLS

(Ĵ	9	G	iol so	de	r víes	1				R	EPORT OF BOREHOLE: BH	08
PI LC	LIEN ROJE DCAT DB NO	T: ECT: FION:	5	CENT SHEE SHEE	REX	L POR		COORDS: 615963.0 m E 6209 STIGATION SURFACE RL: 9.73 m DATUN INCLINATION: -90° HOLE DIA: 150 mm HOLE D	M: AH	D		SHEET: 2 OF 3 94 53 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAF LOGGED: MH DATE: 30/ CHECKED: H DATE: 36	10/08
		_	C	nilling	1	_	1	Field Material Description	_			Defect Information	1107
METHOD	WATER	TCR	RQD (SCR)	RECOVERED	DEPTH (metres)	DEP RL	H GRAPHIC		HERING	STRE	MPa	DEFECT DESCRIPTION DI & Additional Observations	ERAGI EFECT ACING (mm) 8888
Sonc Sonce	10	00				<u>9.50</u>						9.50-11.00: Inferred drill breaks 9.5m to 11.0m, recovered as subangular Gravel and Cobbles.	
				l geo	IVUIUU	ICOIOCIN	ai bun	phole must be read in conjunction with accompar poses only, without attempt to assess geotechnic s or potential contamination are for information or of the properties s	cal pro niv an	pertie d do n	D DF D	anaible anning the start of the	L F02:

	Golder					ípe	REPORT OF BOREHOLE: BH08						
F	CLIENT: CENTRI PROJECT: SHEEP			NTREX EEP HILL PORT IN EEP HILL			INCLINATION: -90°	CONTRACTOR: BOART LONG	DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR				
É	IOB N	0:		087661006				HOLE DIA: 150 mm HOLE (DEPT	CHECKED: L DATE			
-				Drilling				Field Material Description	ภา	1	Defect Information		
METHOD	WATER	TCR	ROD (SCR)	RECOVERED	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIPTION	AVERAGE DEFECT SPACING (mm)	
Sonic		100				11.00		GRANITE, fine to coarse grained, layered, pale grey, pink, white, quartzite inclusions, veins of micaceous schist, some orange staining. END OF BOREHOLE @ 11.00 m TARGET DEPTH STANDPIPE INSTALLED	DW				
				3	18								
				h geo	This r ydroge technie	eport of eological cal prope	boreho purpo: erties o	ole must be read in conjunction with accompa ses only, without attempt to assess geotechni r potential contamination are for information o of the properties	only ar	d do not nec		JT FN, F02a RL3	

SHEEP HILL MARINE PORT FACILITY BASELINE STUDY

1.0 INTRODUCTION

The quality assurance and quality control procedures undertaken by Golder personnel as part of the investigation were based on the guidelines provided in AS 4482.1 and the National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM).

The following general quality assurance and quality control procedures were undertaken by Golder Associates personnel as part of this investigation:

- Use of a new pair of disposable gloves for each sample collected;
- Backhoe samples were taken away from the bucket;
- Tracking of sample movements using chain-of-custody documentation;
- Checking sample holding times;
- Use of NATA registered laboratories; and
- Performance of laboratory controlled tests and analysis of field duplicates (inter- and intra- laboratory duplicates) to check the reproducibility of the laboratory results.

Rinsate samples were not required due to the use of disposable nitrile gloves between each soil sampling location. During Groundwater sampling new tubing was used for each hole and the pump was washed in a solution of de-ionised water and Decon detergent and rinsed in de-ionised water between each sampling location.

Soil samples were collected in 250 mL jars capped with Teflon lined lids and groundwater samples in bottles provided by a NATA accredited analytical laboratory. The jars and bottles were labelled and stored in a chilled cool-box immediately.

Samples were dispatched to NATA accredited analytical testing laboratories (ALS Environmental or Labmark) under chain of custody documentation. A copy of the chain of custody information is presented in Appendices H and J.

2.0 SAMPLING FREQUENCY

2.1 Soil Sampling Frequency

The soil sampling frequency in AS4482.1, for a site of 105 hectares, is over 500 locations. A total of 127 soil samples recovered from 32 locations by borehole or hand were analysed as part of the baseline investigation of soil at the proposed marine port site.

The soil sampling was undertaken on an approximately 140 m square grid across the site and based on the land area of 105 hectares the sampling density equated to less than 1 location per hectare. However, given that no acute sources of contamination have been identified in past investigations carried out on the site or adjacent properties, the density and spread of soil sample locations are considered adequate to make a judgement of the contamination status of soil on site.

2.2 Groundwater Sampling Frequency

Eight groundwater primary samples were collected from eight groundwater monitoring wells on the site and were analysed for anions and cations and a VIC EPA Screen Comprehensive suite which includes heavy metals, total petroleum hydrocarbons (TPHs), benzene, toluene, ethylbenzene, xylenes (BTEX), polycyclic

aromatic hydrocarbons (PAHs), monocyclic aromatic hydrocarbons (MAHs), fumigants, total cyanide, fluoride, phenolic compounds, organochlorine pesticides (OCPs), organophosphorous pesticides (OPPs), polychlorinated biphenyls (PCBs) and chlorinated and non-chlorinated volatile organic compounds (VOCs).

The number of groundwater wells installed and the number of groundwater analyses are considered adequate to make a judgment of the contamination status of groundwater on site.

3.0 QUALITY CONTROL

3.1 Sample Holding Times

The samples were analysed within the prescribed holding times, with the exception of the following samples for pH analysis:

- Soil samples extracted 1 day out of holding time:
 - BH04/01, BH04/02, BH04/03
- Soil samples extracted 3 days out of holding time:
 - BH01/01
 - BH03/01, BH03/02, BH03/03
- Soil samples extracted 4 days out of holding time:
 - BH01/02, BH01/03
 - BH02/01, BH02/02, BH02/03
- Soil samples extracted 6 days out of holding time:
 - BH06/01, BH06/02, BH06/03

There were no holding time analyses errors reported for groundwater samples.

The cause of the late analyses for the above samples was due to the extended period of field work involved in collecting these samples, and to an oversight or delay by the laboratory in processing and registering the samples. Whilst the extraction/analyses in the above samples were conducted out of the holding times, it is considered unlikely that this has had an adverse affect on data quality or use of the data for purposes of this investigation since elevated pH values are persistent in the environment, and are therefore unlikely to have degraded or reduced as a consequence of the delayed processing.

3.2 Rate of Field Duplicate Testing

The NEPM refers to AS 4482.1 with respect to guidance on quality assurance testing. AS 4482.1 recommends intra-laboratory blind field duplicates and inter-laboratory split field duplicates are each taken at a rate of 1 in 20 samples (5%).

The rate of soil testing for blind duplicates was approximately 1 in 21 (6 out of 127 samples, a rate of 4.7%) at primary laboratories (ALS Environmental for groundwater samples, as well as soil samples from test pits and surface grab samples, and SGS for soil samples from boreholes) and the rate of testing for split duplicates was approximately 1 in 19 (5 out of 97 samples, a rate of 5.1%) at a secondary laboratory (LabMark).

One duplicate groundwater sample was analysed at each of the primary and secondary laboratories.

Quality Assurance and Quality Control Information

The key parameters for soil and groundwater are considered to be metals, TPH, BTEX, PAH, OCPs and OPPs. Generally the blind duplicate rates were above the 5% specified in AS4482.1. The blind duplicate rate for soils sampled for metals (4.7%) was marginally below the blind duplication rate recommended in AS4482.1. The significance of this will be dependent on the quality of the QC data.

The key parameters for groundwater are considered to be metals, TPH and VHCs. The groundwater blind and split duplication rates met the recommended 5% for metals, anion and cation analyte suites. Blind and split duplication rates recommended in AS4482.1 were not met by the other key chemicals.

3.3 QA/QC Results for Investigation

3.3.1 RPDs for Blind and Split Duplicates

To assess the acceptability of duplicate QC results, the relative percent difference (RPD) was calculated for the duplicate samples analysed. The RPD is the difference between each set of duplicate results and their mean, with the results expressed as a percentage of the mean. The RPD was considered to be 0% if both results were below the laboratory limit of reporting (LOR). If one result was below the LOR and the other above, the RPD was not calculated.

Calculated RPD values for the investigation are presented in Appendix I3 and K3.

The RPDs for the soil intra-laboratory blind duplicate results ranged from 0% to 28%. Of the 355 calculated RPD values, all were within the generally accepted limit of 50%. The RPDs for the soil inter-laboratory split duplicate results ranged from 7.7% to 199.3%. Of the 33 calculated RPD values, 23 were within the generally accepted limit of 50%.

The main contribution to the exceedences of the acceptable RPD of 50% was from the split duplicate results. The primary chemical results indicate some heterogeneity in the samples and this heterogeneity is likely to have been magnified when a different laboratory, using different techniques analysed the soil. Furthermore, the small variations at low concentrations for some of the contaminants reported may also have contributed to the high RPD results.

The RPDs for the groundwater intra-laboratory blind duplicate results ranged from 0% to 30.7%. Of the 26 calculated RPD values, all were within the generally accepted limit of 50%. The RPDs for the groundwater inter-laboratory split duplicate results ranged from 1.0% to 32.8%. Of the 17 calculated RPD values, all were within the generally accepted limit of 50%.

Therefore the reproducibility of soil and groundwater data for the contaminants of concern is considered sufficient to provide confidence in the primary data.

The concentrations of metals for the 124 soil samples analysed were below the laboratory LOR for many analytes in this suite, and exceedences were reported for copper, vanadium and zinc analytes only. The low duplication rates (<5%) noted in Section 3.2 are not considered to affect the outcome of the chemical testing.

The concentrations of OCPs/OPPs, phenols, CHCs, BTEX and VOCs (including VHCs) were generally below the laboratory LOR, and concentrations of TPH were generally below or marginally above the laboratory LOR in the groundwater samples analysed. The absence of duplication of groundwater samples noted in Section 3.2 is therefore not considered to affect the outcome of the chemical testing for these analytes.

3.3.2 Internal Laboratory QA/QC Analysis

Laboratory quality control procedures included the following:

- Analysis of a 'method blank'; an analyte-free matrix to which all reagents are added in the same volume or proportions as used in sample processing. Analysis should show analyte concentrations below the laboratory LORs. Failure was considered to have occurred if concentrations at or above the LOR were reported.
- Analysis of laboratory 'duplicate' samples; a separate portion of a sample being analysed that is treated the same as the other samples in the batch. Concentrations reported for the duplicates were compared to the corresponding primary sample and RPDs calculated. Failure was considered to have occurred if RPDs greater than 50% were calculated.
- Analysis of samples with added 'surrogate spike'; an organic compound which is similar to the target analytes in chemical composition and behaviour in the analytical process, but which is not normally found in environmental samples, or 'matrix spike'; an aliquot of sample spiked with a known concentration of target analytes during sample preparation and analysis, or 'laboratory control spike', is a reference material tested at the same time as a real sample. It is used to demonstrate that the analytical instrument is properly calibrated and is capable of providing accurate and quantitative results. Results from spikes are reported as the percentage recovery of the known quantity added to the sample. Surrogate spikes were also added to blank samples and duplicate samples and the percentage recovery reported. Failure was considered to have occurred if the percentage recovery reported was outside the acceptable recovery limits set by the laboratory. These limits generally differ for each analyte.

No laboratory internal duplicates for soil and groundwater returned results above RPDs greater than 50%.

No laboratory internal method blanks for soil and groundwater returned results above the respective laboratory LOR.

Most results from the primary laboratory (ALS Environmental), showed spike recoveries (for the matrix spikes, internal control spikes and internal surrogate spikes) within the acceptable range nominated by this laboratory for the analytes tested.

Phenol, OCP/OPP, and TPH/BTEX analyses conducted during the soil sampling and PCB, OCP/OPP, TPH/BTEX and VOCs during the groundwater sampling showed some spikes outside the acceptable range. However, the individual spike failures reported is considered low for each primary analyte tested. An example for both soil and groundwater spike recoveries are as follows.

For soil, spiked OCP/OPP samples had the highest number of poor recoveries (5). The number of OCP/OPP suites spiked was 63. However, the number of individual analytes within this suite is 42 (25 OCPs plus 17 OPPs). Only 5 OCP/OPP spike tests failed in 1890 individual analytes (giving a failure rate of 0.26%).

Similarly, for groundwater, spiked TPH/BTEX had the highest number of poor recoveries (5). The number of TPH/BTEX suites that were spiked was 8. However, the number of individual analytes within this suite is 9 (4 TPH plus 5 BTEX). Only 5 TPH/BTEX tests failed in 72 individual analytes tested (giving a failure rate of 6.9%). It must also be noted that the failures reported for TPH/BTEX spikes only marginally exceeded the acceptable recovery limits, ranging from just 2% to 4% greater than the upper data quality objective adopted by the laboratory.

Therefore, the number of spike failures is considered acceptable for the purpose of this investigation.

i:\miningl2010\107661001 - centrex - port eia approvals - lipson\087661006 centrex sheep hill\correspondence out\087661006 030 r rev0 esa\087661001 030 r rev1\087661006 030 r rev1 - appendices\appendix c - qaqc procedures\appendix c.doc

SHEEP HILL MARINE PORT FACILITY BASELINE STUDY

APPENDIX D Groundwater Well Permits

GOVERNMENT OF SOUTH AUSTRALIA

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153464	
Expiry Date:	02/09/2009	

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7 All wells must be drilled vertical unless written permission is obtained from the

Minister.

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

movar

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

Date: 2/09/2008

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153463	
Expiry Date:	02/09/2009	

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

mora

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153462	
Expiry Date:	02/09/2009	

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

milarie

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153461	
Expiry Date:	02/09/2009	

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

more

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153460
Expiry Date:	02/09/2009

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

milara

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153459	
Expiry Date:	02/09/2009	

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

mora

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153458	
Expiry Date:	02/09/2009	

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

milara

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153457
Expiry Date:	02/09/2009

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

morre

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

RESOURCE ALLOCATION DIVISION GPO Box 2834 Adelaide SA 5001 Ph: 8463 6875 Fax: 8463 6840

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	153456	
Expiry Date:	02/09/2009	

Permission is hereby granted to:

GOLDER ASSOCIATES P/L ACN 006 107 857 199 FRANKLIN STREET ADELAIDE SA 5000

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CL 872/7 Section 386 Hundred of Yaranyacka

CL 872/7 Section 388 Hundred of Yaranyacka

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the

NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

mourie

Melinda Kovac COORDINATOR WATER LICENSING Delegate of Minister for Environment and Conservation

APPENDIX E Groundwater Well Construction Details

PRC	ATI	CT: ON:	CENTRI SHEEP SHEEP 0876610	HILL PORT INVEST HILL	'IGA	TION	COORDS: 616712.0 m E 6209958.0 m N MGA94 53 SURFACE RL: 8.70 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 13.50 m		C L	RILL RIG: 3 ONTRACTO OGGED: M HECKED: 2	DR: BOART LONGYE	23/10/0
	D	rilling		Sampling			Field Material Descriptio	n and I				1.1
	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)		С	ONSTRUCTION	
Setting V	North		8.70 8.50 1.50 7.20 1.90 2.00 6.70				Clayey SAND, fine to coarse grained, brown, low plasticity fines, trace of fine to coarse grained, pale brown/ white, low plasticity fines, trace of fine to coarse gravel. Silty SAND, fine to coarse grained, white, low plasticity fines. Clayey SAND, fine to coarse grained, pale brown/ white, low plasticity fines, trace of fine to coarse gravel. GRANITE, fine to coarse grained, layered, pale grey, white quartite inclusions (up to 100mm) and veins of Mica Schist, some orange staining.				 Cement Casing (0.0 Cement Casing (0.1 Filter Pack (6.3 - 13.2) 	6.3)
		8	7.60 1.10 8.00 0.70 8.50 0.20		ŀ		Gravelly SAND, pale brown, Quartz inclusions up to 5mm. Inferred RS/EW GRANITE GRANITE, fine to coarse grained, layered pale grey, white, quartzite inclusions up to 100mm and veins of mica schist, with some orange staining. SCHIST, fine to coarse grained, tayered, dark grey, occasional quartzite veins up to 5mm, trace of orange staining.					

(Z		Golo	ler ciates			REPO	RT	OF BOREHOLE: GW01
PF LC	IENT OJE CAT B NC	CT: ION:	CENTR SHEEP SHEEP 087661	HILL PORT INVEST	IGA	TION	COORDS: 616712.0 m E 6209958.0 m N MGA94 53 SURFACE RL: 8.70 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 13.50 m		SHEET: 2 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 23/10/08 CHECKED: H DATE: 30/1/09
	C	rilling		Sampling		1	Field Material Description	n and l	nstrumentation
					6				CONSTRUCTION
METHOD	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)	
Sonic			13,50	This report of bore bydrogeological pure	hole		SCHIST, fine to coarse grained, layered, dark grey, occasional quartzile veins up to 5mm, trace of orange staining.	viations	t thes been prepared for amination. Any reference to
			ge	eotechnical properties	SOF	potenti	without attempt to assess geotechnical properties or possil al contamination are for information only and do not necess of the properties stated.	arily inc	licate the presence or absence GAP gINT FN. F05 RL3

GAP 5_02 LIB GLB Log GAP WELL 037661006 - CENTREX SHEEP HILL GPJ <<DrawnagFile>> 30012009 15:57 8,1.025

GAP 8_02 LIB.GLB Log GAP WELL 087661006 - CENTREX SHEEP HILL.GPJ << DrawingFile>> 30/01/2009 15:57 8:1.025

REPORT OF BOREHOLE: GW02

 CLIENT:
 CENTREX
 COOL

 PROJECT:
 SHEEP HILL PORT INVESTIGATION
 SURF

 LOCATION:
 SHEEP HILL
 INCLI

 JOB NO:
 087661006
 HOLE

COORDS: 616476.0 m E 6209979.0 m N MGA94 53 SURFACE RL: 8.91 m DATUM: AHD INCLINATION: -90" HOLE DIA: 150 mm HOLE DEPTH: 13.00 m SHEET: 1 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 23/10/08 CHECKED: A DATE: 35 (1) 09

	1	Drilling		Sampling		L	Field Material Descriptio	n and l	nstrument		
METHOD	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)		CC	DNSTRUCTION
Sonia		0	0.10 8.81 0.80 8.11			×0 × × 0	Clayey SAND, fine to medium grained, brown, low plasticity fines, trace of Gravel. Clayey SAND, fine to coarse grained, pale brown, low plasticity fines, trace of fine to coarse Gravel. Gravelly Silly SAND, fine to coarse grained, grey/ green, fine to coarse Gravel, low plasticity fines.				Cement Casing (0.0 - 5.0)
Soric	65/1/08		2.00 6.91	hydrogeological purpo		234++++++++++++++++++++++++++++++++++++	GRANITE, fine to coarse grained, layered, pale grey, white, gravel-sized quartite inclusions, veins of mica schist, some orange staining.	la cont	mination	Any refere	nce to
	_		0.0	and a second			of the properties stated.		sere une p	Coence Ul	absence GAP gINT FN. F05 RL3

			Golo	ler Liates			REPO	RT	OF BOREHOLE: GW02
PI L(LIENT ROJE DCAT	CT: ION:	SHEEP	HILL PORT INVEST	GA	TION	COORDS: 616476.0 m E 6209979.0 m N MGA94 53 SURFACE RL: 8.91 m DATUM: AHD INCLINATION: -90°		SHEET: 2 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 23/10/08
J	OB NO		087661		_		HOLE DIA: 150 mm HOLE DEPTH: 13.00 m		CHECKED: 16 DATE: 301/09
-	1	Drilling	-	Sampling	Г		Field Material Description	n and l	nstrumentation CONSTRUCTION
METHOD	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT VIELD (L/s)	
-		10	10.50			+++++++++++++++++++++++++++++++++++++++	GRANITE, fine to coarse grained, layered, pale grey, white, gravel-sized quartzite inclusions, veins of mica schist, some orange staining. SCHIST, fine to coarse grained, layered, dark grey.		
lic		11-				- + + + - + + + - +	GRANITE, fine to coarse grained, layered, pale grey, white, gravel-sized quartzite inclusions, veins of mica schist, some orange staining.		
Sonic		12—				+ + + + - + + + + +			
		-13	<u>13.00</u> -4.09			+ + - + - + - + + +			
		10 V V V					END OF BOREHOLE @ 13.00 m TARGET DEPTH STANDPIPE INSTALLED		
		14							
		15— -							
		- 16							
		17—							
									>
		19							
		20	ge	hydrogeological purp	ose	s only,	be read in conjunction with accompanying notes and abbre without attempt to assess geotechnical properties or possil al contamination are for information only and do not necess	ble con	tamination. Any reference to
	_		_				of the properties stated.		RL3

GAP 8_02 LIB GLB Log GAP WELL 037651006 - CENTREX SHEEP HILL GPJ << DrawingFile>> 30/01/2009 15:57 8.1.025

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

COORDS: 616334.0 m E 6209804.0 m N MGA94 53 SURFACE RL: 8.05 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 10.30 m SHEET: 1 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 24/10/08

	Drilling		Sampling		Field Material Descriptio	n and l	Instrumentation
METHOD WATER	and the second	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)	CONSTRUCTION
	- 0	8.05 0.20 7.85			Clayey SAND, fine to coarse grained, brown, low plasticity fines, trace of gravel up to 5mm in size. Clayey SAND, fine to coarse grained, red brown, low plasticity fines.		Cernent Casing (0.0 - 5.2)
	2	<u>1.90</u> 6.15			Sandy CLAY, high plasticity, red brown, fine to coarse sand.		
Sonic	3	<u>4.00</u> 4.05			Gravelly SAND, fine to coarse grained, pale brown, fine to coarse Gravel, trace of low plasticity fines.		
	6	7.00		0 0 0 0 0			Bentonite Seal (5.2 - 6.2) Filter Pack (6.2 - 10.3)
	8-	1.05		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	GRANITE, fine to coarse grained, layered, pale grey, white, gravel-sized quartrite inclusions, veins of mica schist, some orange staining.		Screen (7.2 - 10.2)
~	9		8	+ + + + + + + + + + + + + + + + + +	fi 2		

GAP 8_02 LIB.GLB Log GAP WELL 087661006 - CENTREX SHEEP HILL.GPJ <</br>

REPORT OF BOREHOLE: GW03

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

COORDS: 616334.0 m E 6209804.0 m N MGA94 53 SURFACE RL: 8.05 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 10.30 m SHEET: 2 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 24/10/08 CHECKED: A DATE: 20/109

Drilling Sampling				Sampling	_		Field Material Description and Instrumentation						
METHOD	ER	TH res)		SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION		CONSTRUCTION				
MET	WATER		DEPTH RL		л Ш Ш Ц	GRA		AIRI					
		10	10.30			+ +		T					
		-	-2.25				END OF BOREHOLE @ 10,30 m TARGET DEPTH STANDPIPE INSTALLED	-					
							STANDPIPE INSTALLED						
		11_											
		-											
		-											
		-											
		12							-				
		1											
		-											
		13—											
		-											
									-				
		-											
		14											
		-											
		15											
		-											
		-											
		16							-				
									-				
		17-											
		-		£		<							
		1											
		-											
		18											
		-											
		-											
		19-	÷				28 30						
		-											
		-											
		20		This report of boreh	ole	must l	e read in conjunction with accompanying notes and abbre	l eviation	s. It has been prepared for				
			ge	hydrogeological purpo otechnical properties	ses or p	only. otenti	e read in conjunction with accompanying notes and abbre without attempt to assess geotechnical properties or poss al contamination are for information only and do not necess of the properties stated.	ible cor sarily in	tamination. Any reference to dicate the presence or absence GAP gINT FN. F05				
		_			-	_	of the properties stated.		dicate the presence or absence GAP gINT FN. F05 RL3				

Golder

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

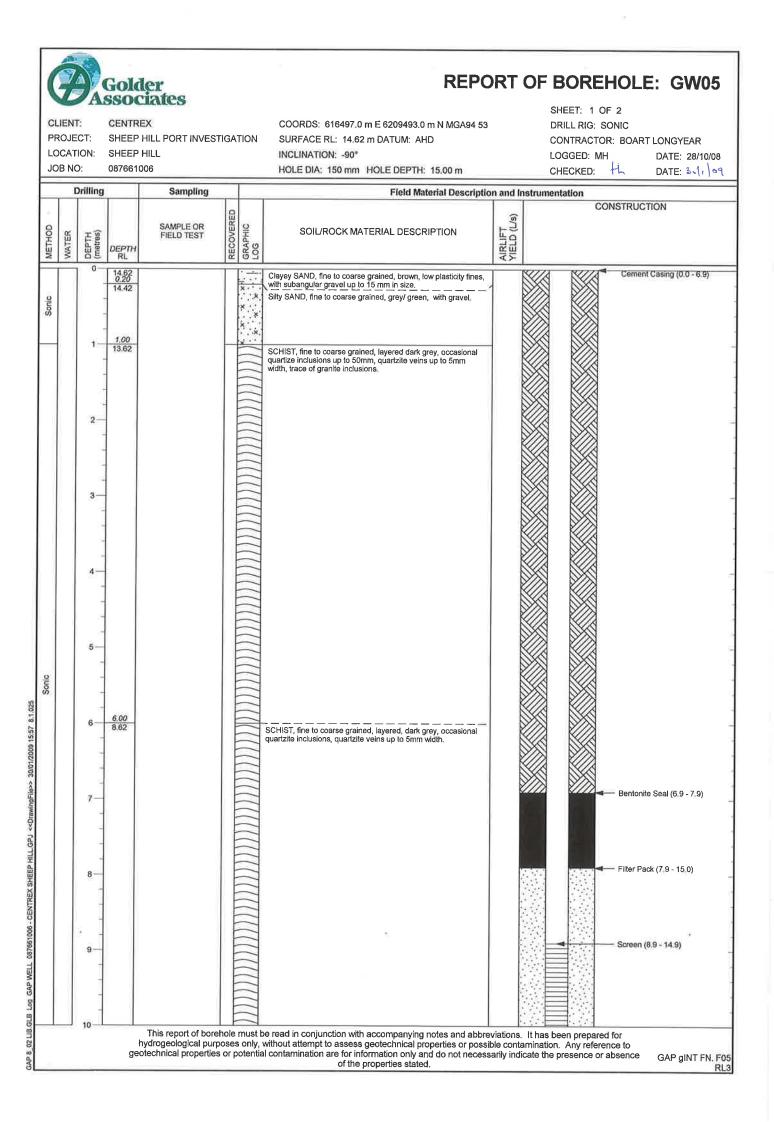
COORDS: 616329.0 m E 6209601.0 m N MGA94 53 SURFACE RL: 17,30 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 18.10 m SHEET: 1 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 26/10/08

CHECKED: th DATE: 30/1/09

	, F	Drilling		Sampling			Field Material Descriptio	n and	nstrume		
METHOD	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)		CO	NSTRUCTION
Sonic		0	17.30 0.50 16.80 2.00				Clayey SAND, fine to coarse grained, pale brown, low plasticity fines, with Gravel. Silty SAND, fine to coarse grained, grey/ green, with gravel.				Cement Casing (0.0 - 10.0)
		3	15.30				SCHIST, fine to coarse grained, layered, dark grey, occasional quartzite inclusions, some veins, trace of orange slaining.				
Soric		6	<u>4.50</u> 12.60				GRANITE, fine to coarse grained, layered, pale grey, pink, while, quartzite inclusions, veins of micaceous schist, some orange staining.				
		8				+ + + + + + + + + + + + + + + + + + +	18	81			*
		10	ge	This report of bore hydrogeological purp totechnical properties	hole r	++++++++++++++++++++++++++++++++++++++	be read in conjunction with accompanying notes and abbre without attempt to assess geotechnical properties or possi al contamination are for information only and do not necess of the properties stated.	viations ble con arily inc	5. It has l taminatio ticate the	Deen prepared n. Any referen presence or a	for ice to ibsence GAP gINT FN.

Golder
- Absociates

 CLIENT:
 CENTREX
 COORDS:
 6


 PROJECT:
 SHEEP HILL PORT INVESTIGATION
 SURFACE R

 LOCATION:
 SHEEP HILL
 INCLINATIO

 JOB NO:
 087661006
 HOLE DIA:

COORDS: 616329.0 m E 6209601.0 m N MGA94 53 SURFACE RL: 17.30 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 18.10 m

	Drilling	<u>E</u>	Sampling		Field Material Description	on and li	Instrumentation CONSTRUCTION
WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)	CONSTRUCTION
oshtod X	10- 11- 12- 13- 14-	14.00			GRANITE, fine to coarse grained, layered, pale grey, pink, white, quartizite inclusions, veins of micaceous schist, some orange staining.		Bentonite Seal (10.0 - 11.0)
	19				END OF BOREHOLE @ 18.10 m TARGET DEPTH STANDPIPE INSTALLED		×

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

COORDS: 616497.0 m E 6209493.0 m N MGA94 53 SURFACE RL: 14.62 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 15.00 m SHEET: 2 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 28/10/08 CHECKED: 1/2 DATE: 25/1/08

	Drilling				Sampling			Field Material Description	on and I					
						0				CONSTRUCTION				
	METHOD	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)					
	F		10-			T		SCHIST, fine to coarse grained, layered, dark grey, occasional	1					
								SCHIST, fine to coarse grained, layered, dark grey, occasional quartzite inclusions, quartzite veins up to 5mm width.						
				1			()							
							(
			11-											
							(
			17				$\left(\right)$							
							$\langle $							
			12-				\sim							
			-				\square							
	Sonic		1			13	\sim							
	ŝ						\square							
		V	40				(
		05/11/08	13-				\sim							
			-				\sim							
							\sim							
			14-				\square							
			-						h					
			-				\sim							
			88	15.00			\square							
Ī			-15	-0.38				END OF BOREHOLE @ 15.00 m						
			-					TARGET DEPTH STANDPIPE INSTALLED						
			-											
8.1.02														
5:57			16							-				
2009 1														
30/01/			-											
10>>>														
wingF			17-											
< <dra< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dra<>														
GPJ			- 4											
DHILL			-							-				
SHEE			18-											
TREX														
- CEI														
61006			ಿ		1			<u>*</u>		× .				
0876			19-							-				
MELL			_											
g GAP			~											
LB LO			-											
GAP 8_02 LIB.GLB Log GAP WELL 087681006 - CENTREX SHEEP HILL.GPJ < <drawingfile>> 30/01/2009 15:57 8.1.025</drawingfile>]	20	I	This report of bore	hole	must b	e read in conjunction with accompanying notes and abbre	viations	. It has been prepared for				
8 02				ge	hydrogeological purp	oses	soniv.	without attempt to assess geotechnical properties or possi al contamination are for information only and do not necess	ble cont	amination. Any reference to				
GAP	_			-				of the properties stated.		licate the presence or absence GAP gINT FN. F05 RL3				

GAP 8_02 LIB.GLB Log GAP WELL 087661006 - CENTREX SHEEP HILL.GPJ <<DrawingFila>> 3001/2009 15:58 8:1,025

REPORT OF BOREHOLE: GW06

CLIENT: CENTREX PROJECT: SHEEP HILL PORT INVESTIGATION LOCATION: SHEEP HILL INCLINATION: -90° JOB NO: 087661006

COORDS: 616584.0 m E 6209704.0 m N MGA94 53 SURFACE RL: 20.54 m DATUM: AHD HOLE DIA: 150 mm HOLE DEPTH: 21.50 m

SHEET: 1 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH CHECKED: A

DATE: 21/10/08 DATE: 201109

Drilling Sampling						Field Material Description and Instrumentation						
WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)		CONSTRU	GHUN		
Γ	0-	0.10 2034		Γ	×	Clayey SAND, fine to medium grained, brown, low plasticity fines, trace of Gravel up to 10 mm in size.	1		Cem	ant Casing (0.0 - 13.4)		
		20.54				SAND, fine to medium grained, pale brown, trace of low plasticity fines.						
		0.70 19.84 0.90			X	Clayey Gravelly SAND, fine to coarse grained, pale brown, fine to coarse Gravel, low plasticity fines.						
	1-	0.90			0.0 X	Sandy GRAVEL, fine to coarse grained, pale brown, fine to coarse Sand, trace cobbles up to 80 mm, Granite & quartz						
	-				×	gravel, mica flecks.						
					× ×	Silty SAND, fine to coarse grained, grey/ green, with granite & quartz gravel up to 30 mm.						
					× *							
	2—				* *							
	-				××							
					.×.							
		2.90			××							
	3—	3.00 17.54			0.0	Clayey Gravelly SAND, fine to coarse grained, pale brown, low plasticity fines, fine to coarse granite & quartz Gravel.						
	1	1.5155			000	Sandy GRAVEL, fine to coarse graine a quartz Gravel.						
	- 3	3.50 17.04			0	Clayey Gravelly SAND, fine to coarse grained, brown, low						
	-				a	plasticity fines, fine to coarse granite & quartz Gravel.						
	4-	4.10			<i>d</i> -							
	- 1	10.44			<u>.</u>	Clayey Silly SAND, fine to coarse grained, pale brown, low plasticity fines, with fine to coarse granite & quartz Gravel and Cobbles up to 70 mm. Mica flecks,						
	-				×,	Cobbles of to 70 mm, mica liecks,						
		EOO			×							
	5-	5.00 15.54				Clayey SAND, fine to coarse grained, pale brown, low plasticity fines, with fine to coarse granite & quartz Gravel and Cobbles up						
	1	5.50				tines, with fine to coarse granite & quartz Gravel and Cobbles up to 80 mm. Mica flecks.						
		15.04			\$	Gravelly Silly SAND, fine to coarse grained, grey/ green, fine to coarse granite & quartz Gravel and Cobbles up to 90 mm.						
					×							
	6-				×			$\langle \rangle \rangle$				
					x O							
					0							
	7-				×							
	-				* 0,))))				
	2				×o			XX				
					*							
	8-				×			\gg				
		}			. 0. ×) M				
	1				.0: X							
		*			.p.×	¥. ≠ (4)		$\langle \rangle \rangle$				
	9—				×			¥X				
	-				× a							
	1	9.50 11.04			×A.	Sandy CLAY, low to medium plasticity, green/ brown, fine to						
	1					coarse Sand, with Gravel.		X				
	10		This report of here	Ŀŀ		e read in conjunction with accompanying notes and abbre		VIA	_K//A			

Golder

CLIENT:	CENTREX	COORDS: 61658
PROJECT:	SHEEP HILL PORT INVESTIGATION	SURFACE RL: 2
LOCATION:	SHEEP HILL	INCLINATION: -9
JOB NO:	087661006	HOLE DIA: 150 r

COORDS: 616584.0 m E 6209704.0 m N MGA94 53 SURFACE RL: 20.54 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 21.50 m SHEET: 2 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 21/10/08 CHECKED: Ho DATE: 21/10/08

		D	rilling		Sampling			Field Material Description	n and l	Instrumentation	
	METHOD	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)		CONSTRUCTION
GAP 8_02 LIB GLB Log GAP WELL 037681006 - CENTREX SHEEP HILL,GPJ < <drawingfile>> 3001/2008 15/58 8.1,025</drawingfile>	Sonic	v osritios		RL 11.00 9.54 11.50 9.04	This report of bore	hole		Sandy CLAY, low to medium plasticity, green/ brown, fine to coarse Sand, with Gravel. Sandy CLAY, medium to high plasticity, brown, fine to coarse grand, and preiss/schist Gravel up to 80mm, trace fine quartz gravel. SCHIST, fine to coarse grained, layered dark grey, occasional quarticle inclusions up to 50mm in size and veins up to 5mm width. SCHIST, fine to coarse grained, layered dark grey, occasional quartzite inclusions and veins, trace of erange staining.	viations		Eed for
GAP 5_00				ge	nydrogeological purp otechnical properties	oses or p	only, otentia	without attempt to assess geotechnical properties or possi al contamination are for information only and do not necess of the properties stated.	ble con arily inc	ntamination. Any refe dicate the presence c	rence to or absence GAP gINT FN. F05 RL3

GAP 8. 02 LIB.GLB Log GAP WELL 087661006 · CENTREX SHEEP HILL GPJ <<DrawingFile>> 3001/2009 15:58 81 025

REPORT OF BOREHOLE: GW06

CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006

COORDS: 616584.0 m E 6209704.0 m N MGA94 53 SURFACE RL: 20.54 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 21,50 m SHEET: 3 OF 3 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 21/10/08 DATE: Sol 1 09

	Drilling	l	Sampling	_		Field Material Descriptio	n and	Instrumentation
METHOD		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)	CONSTRUCTION
Sonic	20-	21.50				SCHIST, fine to coarse grained, layered dark grey, occasional quartzite inclusions and veins, trace of orange staining.		
	22-	-0.96				END OF BOREHOLE @ 21,50 m TARGET DEPTH STANDPIPE INSTALLED		
	23-							-
	24							
	25							
	26-							
	29-		a.			a Birth and an		
	30		This report of boreh hydrogeological purpo		must b	e read in conjunction with accompanying notes and abbrev without attempt to assess geotechnical properties or possib I contamination are for information only and do not necessa of the properties stated.	viations	 It has been prepared for amination. Any reference to insta the prepared as a base as
				- P	Jugi rud	of the properties stated.	anny INC	licate the presence or absence GAP gINT FN. F05 RL3

GAP 8_02 LIB GLB Lop GAP WELL 087661006 - CENTREX SHEEP HILL GPJ <<DrawningFile>> 30/01/2009 15:58 8:1,025

REPORT OF BOREHOLE: GW07

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

COORDS: 616089.0 m E 6210042.0 m N MGA94 53 SURFACE RL: 7.27 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 11.00 m SHEET: 1 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 29/10/08 CHECKED: L DATE: 3c(1)oq

GAP 8_02 LIB.GLB Log GAP WELL 087661006 - CENTREX SHEEP HILL.GPJ << DrawingFile>> 30/01/2009 15:58 8.1 025

REPORT OF BOREHOLE: GW07

 CLIENT:
 CENTREX

 PROJECT:
 SHEEP HILL PORT INVESTIGATION

 LOCATION:
 SHEEP HILL

 JOB NO:
 087661006

COORDS: 616089.0 m E 6210042.0 m N MGA94 53 SURFACE RL: 7.27 m DATUM: AHD INCLINATION: -90° HOLE DIA: 150 mm HOLE DEPTH: 11.00 m SHEET: 2 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 29/10/08 CHECKED: DATE: 30/1/39

Drilling		Sampling		Field Material De		Description and Instrumentation			
METHOD	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)	CONSTRUCTION
Sonic		10				×	Silty sandy CLAY, low plasticity, yellow, fine to coarse Sand, trace of Gravel and Cobbles.		
		11	<u>11.00</u> -3.73			a <u></u> a	END OF BOREHOLE @ 11.00 m TARGET DEPTH STANDPIPE INSTALLED		
		12—							
		13							
		14							
		16-							
		17-							
		-							
									-
		19		*			*3 A	*	
		20		This report of boreho		mueth		vieti	
			l geo	hydrogeological purpo otechnical properties o	ses or p	only, otentia	e read in conjunction with accompanying notes and abbrev without attempt to assess geotechnical properties or possib I contamination are for information only and do not necessa of the properties stated.	arily ind	. It has been prepared for amination. Any reference to icate the presence or absence GAP gINT FN, F05 RL3

Golder

GAP 8_02 LIB.GLB Log GAP WELL 087661006 - CENTREX SHEEP HILL.GPJ <<DrawingFile>> 30/01/2009 15:58 8.1.025

REPORT OF BOREHOLE: GW08

CLIENT:	CENTREX	COORD
PROJECT:	SHEEP HILL PORT INVESTIGATION	SURFA
LOCATION:	SHEEP HILL	INCLIN
JOB NO:	087661006	HOLED

COORDS: 615963.0 m E 6209706.0 m N MGA94 53 SURFACE RL: 9.73 m DATUM: AHD INCLINATION: -90* HOLE DEPTH: 11.00 m SHEET: 1 OF 2 DRILL RIG: SONIC CONTRACTOR: BOART LONGYEAR LOGGED: MH DATE: 30/10/08 CHECKED: DATE: 20/10/08

	Drilling		Sampling		Field Material Descriptio	n and Ir	nstrumentation	
				ED		(s	CONSTRUCTION	
WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)		
] ^-	9.73			Sandy CLAY, high plasticity, red brown, fine to coarse Sand, trace of Gravel.		Cement Casing (0.0	- 3.0)
	-							
	-							
	1-	1						
	-							
	-							
	2-							
	-							
	3—			<u> </u>			Bentonite Seal (3.0 -	4.0)
	- 9			÷				
	3	3.50 6.23						
		0.20		1	Clayey SAND, fine to coarse grained, red brown, high plasticity fines, trace of Gravel.			
	4-	4.00 5.73					Filter Pack (4.0 - 11.0	0)
	24	21.2		÷.	Sandy CLAY, high plasticity, red brown, fine to coarse Sand, with Gravel.			2
				· · ·				
							승규는 승규는 것을 가지?	
	5—	5.00 4.73		<u>*</u>	CLAY, high plasticity, red brown, fine to coarse Sand.		Screen (5.0 - 11.0)	
	-	- 128		-27	oux r, high pleading, red brown, the to coalse Sant.			
	6—							
				123				
				[-]				
	-			[-]				
	7-							
		7.50 2.23			Clayey SAND, fine to coarse grained, high plasticity fines, trace			
	3	0.00			of Gravel.			
	8-	8.00 1.73		*-	Silty Sandy CLAY, low plasticity, yellow, fines, fine to coarse Sand, trace of Gravel.			
∇				X	Sand, trace of Gravel.			
05/11/08	5.							
05/1	-		8		9 8	1		
	9—			×				
	-	9,50		× .		1		
	-	0.23		+ +	GRANITE, fine to coarse grained, layered, pale grey, pink, white, quartzite inclusions, veins of micaceous schist, some orange			
	-			+++	staining.			
	10	v.	This report of bore	hole must	be read in conjunction with accompanying notes and abbre without attempt to assess geotechnical properties or possi	viations.	. It has been prepared for	
		n geo	technical properties	s or potenti	al contamination are for information only and do not necess	arily indi		IT FN.

(T		Golo	ler ciates			REPO	RT	OF BOREHOLE: GW08
CLIENT:CENTREXPROJECT:SHEEP HILL PORT INVESTIGATIONLOCATION:SHEEP HILLJOB NO:087661006						TION	COORDS: 615963.0 m E 6209706.0 m N MGA94 53 DRILL RIG: SONIC SURFACE RL: 9.73 m DATUM: AHD CONTRACTOR: BOART LONGYEA INCLINATION: -90° LOGGED: MH DATE: 30 HOLE DEPTH: 11.00 m CHECKED: H DATE: 30		
	C	Drilling	_	Sampling			Field Material Description	n and li	nstrumentation
METHOD	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	AIRLIFT YIELD (L/s)	CONSTRUCTION
Sonic			<u>11.00</u> -1.27			+ + - + - + - + - + - + - + - + - + - +	GRANITE, fine to coarse grained, layered, pale grey, pink, white, quartzite inclusions, veins of micaceous schist, some orange staining. END OF BOREHOLE @ 11.00 m TARGET DEPTH STANDPIPE INSTALLED		
		14					-6		
		15					•		
		17							-
		18					×		20 OL -
		20	ge	This report of boreh hydrogeological purpe eotechnical properties	nole ose or p	must i s only, potentia	be read in conjunction with accompanying notes and abbre without attempt to assess geotechnical properties or possit al contamination are for information only and do not necess of the properties stated,	viations ble cont arily ind	. It has been prepared for amination. Any reference to icate the presence or absence GAP gINT FN. F05 RL3

GAP 8_02 LIB.GLB Log GAP WELL 037661006 - CENTREX SHEEP HILL.GPJ <<DrawngFile>> 30/01/2009 15:68 811025

Groundwater Well Development and Sampling Forms

GROUNDWATER BORE DEVELOPMENT

RECORD FORM

BORE ID	
---------	--

GW01

PROJE

JECT INFORMATION			
Project Number:	087661006	Date:	30-Oct-08
Client:	CENTREX	Time:	pm
Site Location:	SHEEP HILL	Developed By:	МН

GROUNDWATER WELL DATA

Interface probe used?	YES	Reference j
	,	

Reference point marked?	YES
Location of Reference Point	TOC

Diameter of Column (mm)	1200		
Diameter of Bore (inc filter pack) (mm)	100		
Standpipe height (m above ground level)			

	Before Developing	After Developing
Standing Water Level (m *BRP)	7.341	9.812
Depth to product (m BRP)		
Thickness of product (m)		
Total Depth of Bore (m BRP)	13.021	13.232
Depth of Water in Column (m)	5.68	3.42
Bore Volume (L)	4.510	

*BRP - Below Reference Point

DEVELOPING RECORD

Time Start hr: min	:						
Time, min	Volume pumped (L)	Conductivity (ms)	Temp (°C)	рН	Redox Potential (mV)	Dissolved Oxygen (mg/L)	Appearance (general observations)
	10	4.61	26.8	11.91	-13	208	Highly turbid/ Brown
	20	4.22	26.7	11.98	-24	196	Highly turbid/ Brown
	30	3.33	26.3	10.02	-5	938	Highly turbid/ Brown
	40	3.19	26.3	11.36	-2	1445	Highly turbid/ Brown
	50	3.20	26.6	11.64	-27	133	Highly turbid/ Brown
Total v	ol. pumped (L)	50.0	Ν	o. bore vol. Pumped	11.1		

Time Finish : hr:min

Developing Method: Submersible pump and regulator

NOTES

Well was pumped until water was clear and sediment was removed.

RECORD FORM

GW02

PROJECT INFORMATION

JECT INFORMATION			
Project Number:	087661006	Date:	30-Oct-08
Client:	CENTREX	Time:	pm
Site Location:	SHEEP HILL	Developed By:	МН
· · · · · · · · · · · · · · · · · · ·			

GROUNDWATER WELL DATA

Interface probe used?	YES		Reference point marked?	YES
		_	Location of Reference Point	TOC

Diameter of Column (mm)	1200
Diameter of Bore (inc filter pack) (mm)	100
Standpipe height (m above ground level)	

	Before Developing	After Developing
Standing Water Level (m *BRP)	8.134	12.484
Depth to product (m BRP)	-	-
Thickness of product (m)	-	-
Total Depth of Bore (m BRP)	14.895	14.901
Depth of Water in Column (m)	6.761	2.417
Bore Volume (L)	5.368	

*BRP - Below Reference Point

DEVELOPING RECORD

Time Start hr: min	:						
Time, min	Volume pumped (L)	Conductivity (ms)	Temp (°C)	рН	Redox Potential (mV)	Dissolved Oxygen (mg/L)	Appearance (general observations)
	20	18.70	27.8	11.27	108	3.38	Highly turbid/ Brown
	40	18.62	26.9	9.98	105	396	Highly turbid/ Brown
Total v	ol. pumped (L)	60.0	N	o. bore vol. Pumped	11.2		

Time Finish hr:min

Developing Method: Submersible pump and regulator

NOTES

Well was pumped until water was clear and sediment was removed.

RECORD FORM

GW03

PROJECT INFORMATION

IECT INFORMATION			
Project Number:	087661006	Date:	30-Oct-08
Client:	CENTREX	Time:	pm
Site Location:	SHEEP HILL	Developed By:	MH

GROUNDWATER WELL DATA

Interface probe used?	YES		Reference point marked?	YES
		-	Location of Reference Point	TOC

Diameter of Column (mm)	1200
Diameter of Bore (inc filter pack) (mm)	100
Standpipe height (m above ground level)	

	Before Developing	After Developing
Standing Water Level (m *BRP)	7.643	8.395
Depth to product (m BRP)	-	-
Thickness of product (m)	-	-
Total Depth of Bore (m BRP)	11.531	11.540
Depth of Water in Column (m)	3.888	3.145
Bore Volume (L)	3.087	

*BRP - Below Reference Point

DEVELOPING RECORD

Time Start hr: min	:						
Time, min	Volume pumped (L)	Conductivity (ms)	Temp (°C)	рН	Redox Potential (mV)	Dissolved Oxygen (mg/L)	Appearance (general observations)
	10	6.64	26.5	9.32	118	16.39	Highly turbid/ Brown
	20	6.25	26.1	9.06	112	14.6	Highly turbid/ Brown
	30	10.20	27.8	8.45	110	2.52	Highly turbid/ Brown
	40	10.80	27.9	8.00	110	11.5	Highly turbid/ Brown
	50	16.53	27.7	7.00	153	2.71	Highly turbid/ Brown
	60	16.78	28.1	6.82	166	2.96	Highly turbid/ Brown
Total	ol. pumped (L)	60.0	N	o. bore vol. Pumped	19.4		

Time Finish hr:min VOI. I

Developing Method: Submersible pump and regulator

NOTES

well was pumped until water was clear and sediment was removed

RECORD FORM

GW04

PROJE

JECT INFORMATION			
Project Number:	087661006	Date: _	30-Oct-08
Client:	CENTREX	Time:	pm
Site Location:	SHEEP HILL	Developed By:	MH

GROUNDWATER WELL DATA

Interface probe used?	YES		Reference point marked?	YES
		-	Location of Reference Point	TOC

Diameter of Column (mm)	1200
Diameter of Bore (inc filter pack) (mm)	100
Standpipe height (m above ground level)	

	Before Developing	After Developing
Standing Water Level (m *BRP)	15.514	18.341
Depth to product (m BRP)	-	-
Thickness of product (m)	-	-
Total Depth of Bore (m BRP)	18.543	18.546
Depth of Water in Column (m)	3.029	0.205
Bore Volume (L)	2.405	

*BRP - Below Reference Point

DEVELOPING RECORD

Time Start hr: min	:						
Time, min	Volume pumped (L)	Conductivity (ms)	Temp (°C)	рН	Redox Potential (mV)	Dissolved Oxygen (mg/L)	Appearance (general observations)
	10	2.20	27.4	8.07	107	1.62	Highly turbid/ Brown
	20	1.79	27.4	8.2	90	0.92	Highly turbid/ Brown
Total v	ol. pumped (L)	30.0	Ν	o. bore vol. Pumped	12.5		

Time Finish : hr:min

Developing Method: submersible pump and regulator

NOTES

well was pumped until water was clear and sediemnt was removed

RECORD FORM

BORE ID	
---------	--

GW05

PROJECT INFORMATION

JECT INFORMATION			
Project Number:	087661006	Date: _	30-Oct-08
Client:	CENTREX	Time:	pm
Site Location:	SHEEP HILL	Developed By:	МН

GROUNDWATER WELL DATA

Interface probe used?	YES		Reference point marked?	YES
		-	Location of Reference Point	TOC

Diameter of Column (mm)	1200
Diameter of Bore (inc filter pack) (mm)	100
Standpipe height (m above ground level)	

	Before Developing	After Developing
Standing Water Level (m *BRP)	3.512	15.921
Depth to product (m BRP)	-	-
Thickness of product (m)	-	-
Total Depth of Bore (m BRP)	16.00	16.00
Depth of Water in Column (m)	12.488	0.079
Bore Volume (L)	9.916	

*BRP - Below Reference Point

DEVELOPING RECORD

Time Start hr: min	:						
Time, min	Volume pumped (L)	Conductivity (us)	Temp (°C)	рН	Redox Potential (mV)	Dissolved Oxygen (mg/L)	Appearance (general observations)
	20	1083.00	26.1	8.16	129	4.07	Highly turbid/ Brown
	40	1089.00	25.8	8.66	72	3.17	Highly turbid/ Brown
Total	ol. pumped (L)	60.0	Ν	o. bore vol. Pumped	6.1		

Time Finish hr:min

Developing Method: Submersible pump and regulator

NOTES

well was pumped until water was clear and sediment was removed.

RECORD FORM

GW06

PROJECT INFORMATION

IECT INFORMATION			
Project Number:	087661006	Date:	30-Oct-08
Client:	CENTREX	Time:	pm
Site Location:	SHEEP HILL	Developed By:	МН
· · · · · · · · · · · · · · · · · · ·			

GROUNDWATER WELL DATA

|--|

Reference point marked?	YES
Location of Reference Point	TOC

Diameter of Column (mm)	1200
Diameter of Bore (inc filter pack) (mm)	100
Standpipe height (m above ground level)	

	Before Developing	After Developing
Standing Water Level (m *BRP)	18.556	19.801
Depth to product (m BRP)	-	-
Thickness of product (m)	-	-
Total Depth of Bore (m BRP)	22.061	22.001
Depth of Water in Column (m)	3.505	2.2
Bore Volume (L)	2.783	

*BRP - Below Reference Point

DEVELOPING RECORD

Time Start hr: min	:						
Time, min	Volume pumped (L)	Conductivity (ms)	Temp (°C)	рН	Redox Potential (mV)	Dissolved Oxygen (mg/L)	Appearance (general observations)
	18	19.70	27.8	8.92	41	1.17	Highly turbid/ Brown
	20	19.80	27.6	8.94	43	1.17	Highly turbid/ Brown
							Clear at end of tubing
Total v	ol. pumped (L)	38.0	Ν	o. bore vol. Pumped	13.7		

Time Finish hr:min

Developing Method: Submersible pump and regulator

NOTES

Well was pumped until water was clear and sediment was removed.

RECORD FORM

GW07

PROJECT INFORMATION

IECT INFORMATION			
Project Number:	087661006	Date:	30-Oct-08
Client:	CENTREX	Time:	pm
Site Location:	SHEEP HILL	Developed By:	MH

GROUNDWATER WELL DATA

Interface probe used?	YES		Reference point marked?	YES
		-	Location of Reference Point	TOC

Diameter of Column (mm)	1200
Diameter of Bore (inc filter pack) (mm)	100
Standpipe height (m above ground level)	

	Before Developing	After Developing
Standing Water Level (m *BRP)	6.571	3.572
Depth to product (m BRP)	-	-
Thickness of product (m)	-	-
Total Depth of Bore (m BRP)	11.951	11.952
Depth of Water in Column (m)	5.38	8.38
Bore Volume (L)	4.272	

*BRP - Below Reference Point

DEVELOPING RECORD

Time Start hr: min	:						
Time, min	Volume pumped (L)	Conductivity (us)	Temp (°C)	рН	Redox Potential (mV)	Dissolved Oxygen (mg/L)	Appearance (general observations)
	20	1460.00	28.4	8.01	9	1.48	Highly turbid/ Brown
	40	1556.00	28.3	7.99	27	1.46	Highly turbid/ Brown
	50	1579.00	28.7	7.96	14	1.85	Highly turbid/ Brown
	60	1627.00	28.9	7.95	5	2.11	Highly turbid/ Brown
Total v	ol. pumped (L)	60.0	N	o. bore vol. Pumped	14.0		

Time Finish : hr:min

Developing Method: submersible pump and regulator

NOTES

well was pumped until water was clear and sediment was removed.

RECORD FORM

GW08

PROJECT INFORMATION

ECT INFORMATION							
Project Number:	087661006	Date: _	30-Oct-08				
Client:	CENTREX	Time:	pm				
Site Location:	SHEEP HILL	Developed By:	МН				

GROUNDWATER WELL DATA

Interface probe used?	YES		Reference point marked?	YES
		_	Location of Reference Point	TOC

Diameter of Column (mm)	1200
Diameter of Bore (inc filter pack) (mm)	100
Standpipe height (m above ground level)	

	Before Developing	After Developing
Standing Water Level (m *BRP)	8.506	6.531
Depth to product (m BRP)	-	-
Thickness of product (m)	-	-
Total Depth of Bore (m BRP)	11.789	11.788
Depth of Water in Column (m)	3.283	5.257
Bore Volume (L)	2.607	

*BRP - Below Reference Point

DEVELOPING RECORD

Time Start hr: min	:						
Time, min	Volume pumped (L)	Conductivity (ms)	Temp (°C)	рН	Redox Potential (mV)	Dissolved Oxygen (mg/L)	Appearance (general observations)
	20	1.92	29.9	7.83	151	2.86	Highly turbid/ Brown
	40	1.80	29.3	7.83	0.48	2.63	Highly turbid/ Brown
Total vol. pumped (L)		60.0	N	o. bore vol. Pumped	23.0		

Time Finish hr:min

Developing Method: submersible pump and regulator

NOTES

well was pumped until water was clear and sediment was removed.

GW01

PROJECT INFORMATION Project Number: 087661006			
Project Number:	087661006		

CENTREX

MH

Site Location: Date of Sampling: Sampled By:

SHEEP HILL 5-Nov-08

MH

GROUNDWATER BORE DATA

Client:

Purged By:

Diameter of Column (mm)	50		
Diameter of Bore (mm)	100		
Standing Water Level (m BRP)	7.481		
Total Depth of Bore (m BRP)	12.872		
Depth of Water in Column (m)	5.391	Bore Volume (L)	20.1
Standpipe height (m above gl)			
BRP - Below Reference Point			

Interface probe used?	YES
Depth to product (m BRP)	-
Depth to water (m BRP)	7.481
Thickness of product (m BRP)	-

Below Reference Poin

PURGING RECORD AND FIELD PARAMETER MEASUREMENTS

Time Start hr: min	9:15								
Volume Purged (L) (accum)	Time (min) (accum)	Time (seconds)	Rate, L/min	Depth to WL, m	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (mS/cm)	Redox Potential (mV)
7	3	51	1.82	8.121	25.6	6.32	11.59	4.39	27
14	7	30	1.87	8.273	25.7	3.79	11.44	4.09	18
30	11	42	2.56	8.279	25.7	3.44	11.36	3.81	19
28	14	12	1.97	8.301	25.7	2.40	9.71	3.36	54
34	18	9	1.87	8.321	25.7	2.07	9.58	3.23	65
40	22	19	1.79	8.333	25.8	11.24	9.40	3.11	83
47	27	21	1.72	8.341	25.8	11.81	9.39	3.07	84
55	32	18	1.70	8.345	25.8	11.82	9.39	3.07	84
	Total v	olume purged (L)	55	No. bore	volumes purged	2.7			
Time Finish	0.45								

9:45 hr:min

Water Quality Meter type: TDS 90FLMV Water Dipper type: Solist interface dipper Pumping Method: Waterra Tubing with Submersible Pump and Regulator

SAMPLING RECORD

Minimum Water Level during Purging (m): 8.345				Container:	Preservation:
Rinsate sample taken BEFORE / AFTER this we	-11?	NO Rinsate ID:	-	Vial 2	NaHS04
Samples taken? YES Duplicate taken?	NO	Duplicate ID:	-	250ml Plastic 1	none
Time between sampling & purging:		Instant		1L Glass 1	none
Water level prior to sampling (m):		8.345		125ml Plastic 1	none
Samples filtered? YES for metals	Filter method:	0.45 mm filter		500 ml Plastic	Na0H
OBSERVATIONS					

Samples:	Colour:	Pale Brown/ Clear	Turbidit	y	Medium	
	Odour:	NIL	Sheen	?	NO	
Weather Conditions:	Sampling Day	Sunny	Temperature	20°C		
	Previous Week	Sunny	Temperature	20°C - 25°C		
Notes:	Water cleared afte	er first 3 minutes.				
fan te "Cream huster Sempline Cuiddin		660 *-licenstermenter	actart or batch the volumes and times (no			Golder

BORE ID	
DORLID	

Thickness of product (m BRP)

GW02

YES

8.152

PROJECT INFORM	ATION				
Project Number:	087661006		Site Location:	SHEEP HILL	
Client:	CENTREX		Date of Sampling:	5-Nov-08	
Purged By:	MH		Sampled By:	MH	
GROUNDWATER	BORE DATA				
Diameter of Column (n	nm)	50		Interface probe used?	
Diameter of Bore (mm))	100		Depth to product (m BRP)	
Standing Water Level (m BRP)	8.152		Depth to water (m BRP)	

Bore Volume (L)

Standpipe height (m above gl) BRP - Below Reference Point

Total Depth of Bore (m BRP)

Depth of Water in Column (m)

PURGING RECORD AND FIELD PARAMETER MEASUREMENTS

13.539

5.387

Time Start hr: min	10:00								
Volume Purged (L) (accum)	Time (min) (accum)	Time (seconds)	Rate, L/min	Depth to WL, m	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (mS/cm)	Redox Potential (mV)
7	4	13	1.66	8.981	26.5	3.61	7.71	10.05	166
14	9	22	1.49	8.992	26.6	3.39	7.70	9.23	174
20	14	49	1.35	9.123	26.7	3.35	7.70	8.78	176
26	19	36	1.33	9.216	26.8	3.36	7.71	8.49	175
33	24	3	1.37	9.234	26.8	3.45	7.70	8.6	175
41	29	28	1.39	9.238	26.8	3.33	7.70	8.61	175
48	34	16	1.40	9.301	26.8	3.27	7.70	8.62	175
52	39	1	1.33	9.305	26.8	3.26	7.71	8.61	175
	Total v	olume purged (L)	52	No. bore v	volumes purged	2.6			
Time Finish	10.40								

20.1

hr:min 10:40

SAMPLING RECORD

Minimum Water Level during Purging (m):		9.305		Container:	Preservation:
Rinsate sample taken BEFORE / AFTER this we	211?	NO Rinsate ID:	-	Vial 2	NaHS04
Samples taken? YES Duplicate taken?	NO	Duplicate ID:	-	250ml Plastic 1	none
Time between sampling & purging:		Instant		1L Glass 1	none
Water level prior to sampling (m):		9.305		125ml Plastic 1	none
Samples filtered? YES for metals	Filter method:	0.45 mm filter		500 ml Plastic 1	NaOH
OBSERVATIONS					

Samples:	Colour	Pale Brown/ Clear		Turbidity	7	Low		
	Odou	: <u>NIL</u>		Sheen	?	NO		
Weather Conditions: Sample	ng Day	Sunny, windy	Te	mperature	20°C			
Previo	us Week	Sunny, windy	Te	mperature	20°C - 25°C			
Notes: Purged	l clear afte	r first 30 seconds.					— A	

087661006

CENTREX

MH

BORE ID	

GW03	;
------	---

PROJECT INFORMATION

Project Numb
Client:

Purged By:

ıber:

Site Location:
Date of Sampling:
Sampled By:

SHEEP HILL 5-Nov-08

MH

GROUNDWATER BORE DATA

Diameter of Column (mm)	50	Interface probe used?	YES
Diameter of Bore (mm)	100	Depth to product (m BRP)	-
Standing Water Level (m BRP)	7.681	Depth to water (m BRP)	7.681
Total Depth of Bore (m BRP)	10.751	Thickness of product (m B	RP) -
Depth of Water in Column (m)	3.07	Bore Volume (L) 11.5	
Standpipe height (m above gl)			

BRP - Below Reference Point

PURGING RECORD AND FIELD PARAMETER MEASUREMENTS

Time Start hr: min	10:50								
Volume Purged (L) (accum)	Time (min) (accum)	Time (seconds)	Rate, L/min	Depth to WL, m	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	Conductivity (mS/cm)	Redox Potential (mV)
5	3	35	1.40	7.889	26.4	9.76	6.81	22.30	157
10	6	8	1.63	7.893	26.3	26.44	6.81	22.10	154
15	9	44	1.54	7.901	26.3	27.22	6.81	21.40	154
20	12	9	1.65	7.912	26.3	26.63	6.71	18.65	155
25	15	58	1.57	7.983	26.2	22.98	6.60	19.55	159
30	18	34	1.62	7.988	26.1	1.01	6.48	20.12	162
35	21	17	1.64	7.989	26.1	1.02	6.46	20.11	163
40	24	28	1.63	7.995	26.1	1.01	6.45	20.10	163
	Total v	olume purged (L)	40	No. bore v	olumes purged	3.5			
Time Finish hr:min	11:20								

SAMPLING RECORD

Minimum Water Level during Purging (m):		7.995		Container:	Prese
Rinsate sample taken BEFORE / AFTER this we	ell?	NO Rinsate ID:	-	Vial 2	Nal
Samples taken? YES Duplicate taken'	NO NO	Duplicate ID:	-	250ml Plastic 1	no
Time between sampling & purging:		Instant		1L Glass 1	no
Water level prior to sampling (m):		7.995		125ml Plastic 1	no
Samples filtered? YES for metals	Filter method:	0.45 mm filter		500 ml Plastic 1	Na

ORSERVAL	IONS

Samples:	Colour	Pale Brown/ Clear	Turbidity		Medium	
	Odou	r: <u>NIL</u>	Sheer	1?	NO	
Weather Conditions: Samp	oling Day	Sunny, windy	Temperature	25°C		_
Prev	ious Week	Sunny, windy	Temperature	25°C		
Notes: Purg	ed clear afte	er 1st minute.				

GW04

PROJECT INFORMATION

Project Number:
Client:

Purged By:

087661006 CENTREX MH

Site Location: Date of Sampling: Sampled By:

SHEEP HILL

5-Nov-08

MH

GROUNDWATER BORE DATA

Diameter of Column (mm)	50		
Diameter of Bore (mm)	100		
Standing Water Level (m BRP)	15.567		
Total Depth of Bore (m BRP)	18.644		
Depth of Water in Column (m)	3.077	Bore Volume (L)	11.5
Standpipe height (m above gl)			
BRP - Below Reference Point	•	4	

Interface probe used?	YES
Depth to product (m BRP)	-
Depth to water (m BRP)	15.567
Thickness of product (m BRP)	-

PURGING RECORD AND FIELD PARAMETER MEASUREMENTS

Time Start hr: min	11:30								
Volume Purged (L) (accum)	Time (min) (accum)	Time (seconds)	Rate, L/min	Depth to WL, m	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (mS/cm)	Redox Potential (mV)
5	4	35	1.09	16.202	26.7	2.89	7.90	4.41	152
10	8	19	1.20	16.215	26.7	2.06	7.90	4.32	151
15	12	58	1.16	16.310	26.6	1.84	7.87	4.21	152
20	16	5	1.24	16.319	26.7	1.88	7.85	4.39	152
25	20	33	1.22	16.319	26.7	1.63	7.85	4.32	152
30	24	54	1.20	16.412	26.7	1.92	7.85	4.34	153
35	28	9	1.24	16.413	26.7	1.84	7.85	4.33	152
46	32	45	1.40	16.415	26.7	1.63	7.84	4.31	152
	Total v	olume purged (L)	46	No. bore v	olumes purged	4.0			
Time Finish hr:min	12:15								

Water Quality Meter type: TDS 90FLMV Water Dipper type: Solist interface dipper Pumping Method: Waterra Tubing with Submersible Pump and Regulator

SAMPLING RECORD

Minimum Water Level during Purging (m):		16.415			Container:	Preservation:
Rinsate sample taken BEFORE / AFTER this we	211?	NO	Rinsate ID:		Vial	Sodium BiShulphate
Samples taken? YES Duplicate taken?	YES		Duplicate ID:	GW104 GW204	1L Plastic	none
Time between sampling & purging:		Instant			1L Glass	none
Water level prior to sampling (m):		16.415			125ml Plastic	HNO3
Samples filtered? YES for metals	Filter method:	0.45 m	m filter		500 ml Plastic 1	none
OBSERVATIONS						

Samples:	Colour	Pale Brown/ clear	Tur	bidity	Mediu	m	
	Odou	:: <u>NIL</u>	S	heen?	NO		
Weather Conditions: Samplin	ng Day	Sunny windy	Temperatu	ire	25°C		
Previou	s Week	Sunny windy	Temperatu	ire	25°C		
Notes: Purged	clear afte	r first 4 minutes.					

GROUNDWA	ATER SAMPI	LING - REC	RD FORM	BORE ID	GW	/05	
PROJECT INFORM	MATION						
Project Number:	087661006		Site Location:	SHEEP HILL	SHEEP HILL		
Client:	CENTREX		Date of Sampling:	5-Nov-08	5-Nov-08		
Purged By:	MH		Sampled By:	MH	-		
GROUNDWATER	BORE DATA						
Diameter of Column (n	nm)	50		Interface probe use	ed?	YES	
Diameter of Bore (mm))	100		Depth to product (m BRP)	-	
Standing Water Level ((m BRP)	13.484		Depth to water (m	BRP)	13.484	
Total Depth of Bore (m	n BRP)	15.689		Thickness of produ	uct (m BRP)	-	

Bore Volume (L)

8.2

Standpipe height (m above gl) BRP - Below Reference Point

Depth of Water in Column (m)

PURGING RECORD AND FIELD PARAMETER MEASUREMENTS

2.205

Time Start hr: min	12:40								
Volume Purged (L) (accum)	Time (min) (accum)	Time (seconds)	Rate, L/min	Depth to WL, m	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µS/cm)	Redox Potential (mV)
5	3	13	1.55	14.041	26.9	3.46	8.10	1440	151
10	6	6	1.64	14.125	26.9	3.34	8.09	1412	151
15	8	42	1.72	14.231	27.0	3.40	8.09	1392	151
20	11	38	1.72	14.516	27.0	3.40	8.09	1373	152
25	12	27	2.01	15.581	27.1	3.39	8.09	1374	153
	Total v	olume purged (L)	25	No. bore v	volumes purged	3.0			
Time Finish hr:min	1:10								

SAMPLING RECORD

Minimum Water Level during Purging (m):	15.581		Container:	Preservation:
Rinsate sample taken BEFORE / AFTER this we	· · · · · · · · · · · · · · · · · · ·	ID: -	Vial 2	_
Samples taken? YES Duplicate taken?			250ml Plastic 1	_
Time between sampling & purging:	Instant	L	1L Glass 1	_
Water level prior to sampling (m):	15.581		125ml Plastic 1	_
Samples filtered? YES for metals	Filter method: 0.45 mm filter		500 ml Plastic 1	
-				
OBSERVATIONS				
Samples: Colour:	Pale Brown/ Clear	Turbidity	Medium	
Odour:	NIL	Sheen	? NO	
Weather Conditions: Sampling Day	Sunny	Temperature	20°C	
Previous Week	Sunny	Temperature	20°C - 25°C	

Refer to "Groundwater Sampling Guidelines" VicEPA Publication 669 *discrete means to restart or batch the volumes and times (non accumulative)

Notes: Well pumped dry x 2.

GROUNDWA	GROUNDWATER SAMPLING - RECORD FORM						BORE ID GWO		
PROJECT INFORMA	ATION								
Project Number:	087661006			Site Location:		SHEEP HILL		-	
Client:	CENTREX			Date of Sampli	ng:	5-Nov-08		-	
Purged By:	MH			Sampled By:			MH		
GROUNDWATER BO	ORE DATA								
Diameter of Column (mm	1)	50				Interface probe	ised?	YES	
Diameter of Bore (mm)		100				Depth to produc	t (m BRP)	-	
Standing Water Level (m	BRP)	18.705				Depth to water (m BRP)	18.705	
Total Depth of Bore (m B	SRP)	22.041				Thickness of pro	oduct (m BRP)	-	
Depth of Water in Colum	n (m)	3.336	Bore Volume (L)	12.4]			-	

Standpipe height (m above gl) BRP - Below Reference Point

PURGING RECORD AND FIELD PARAMETER MEASUREMENTS

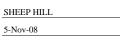
Time Start hr: min	8:00								
Volume Purged (L) (discrete)	Time (min) (accum)	Time (seconds)	Rate, L/min	Depth to WL, m	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (mS/cm)	Redox Potential (mV)
3	2	21	1.28	18.916	27.9	2.44	7.49	23.5	184
3	4	30	0.67	19.476	27.8	2.37	7.48	23.3	183
3	6	48	0.44	21.321	27.7	3.01	7.47	23.1	182
3	8	52	0.34	21.965	27.7	3.02	7.47	22.9	183
	Tatala	(D become annual	12	No hores		1.0			
Time Finish hr:min	8:30	olume purged (L)	12	No. bore v	volumes purged	1.0			

SAMPLING RECORD

SAMITLING RECORD							
Minimum Water Level during Purging (m):		21.965			-	Container:	Preservation:
Rinsate sample taken BEFORE / AFTER this we	11?	NO	Rinsate ID:	-		Vial	Sodium BiShulphate
Samples taken? YES Duplicate taken?	NO	D	uplicate ID:	-		1L Plastic 1] none
Time between sampling & purging:		Instant				1L Glass	none
Water level prior to sampling (m):		21.965				125ml Plastic	HNO3
Samples filtered? YES for metals	Filter method:	0.45 mm f	filter			500 ml Plastic 1] none
OBSERVATIONS							
Samples: Colour:	Pale Brown			Turbidity	Low / Me	dium / High	
Odour:	NIL			Sheen	? YES	/ NO	
Weather Conditions: Sampling Day	Sunny, windy			Temperature	25°C	_	
Previous Week	Sunny, windy			Temperature	25°C		
Notes: Bailer was used du	e to depth of we	ell.					

BORE ID	

)	GW07


PROJECT INFORMATION

Project	Numb
Client:	

ber: Purged By:

087661006	5
CENTREX	K
MH	

Site Location: Date of Sampling: Sampled By:

MH

GROUNDWATER BORE DATA

Diameter of Column (mm)	50				Interface I
Diameter of Bore (mm)	100				Depth to p
Standing Water Level (m BRP)	6.814				Depth to v
Total Depth of Bore (m BRP)	11.631				Thickness
Depth of Water in Column (m)	4.817	Bore Volume (L)	18.0		
Standpipe height (m above gl)		-		•	

Interface probe used?	YES
Depth to product (m BRP)	-
Depth to water (m BRP)	6.814
Thickness of product (m BRP)	-

BRP - Below Reference Point

PURGING RECORD AND FIELD PARAMETER MEASUREMENTS

Time Start hr: min	1:40								
Volume Purged (L) (accum)	Time (min) (accum)	Time (seconds)	Rate, L/min	Depth to WL, m	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (mS/cm)	Redox Potential (mV)
5	2	22	2.11	7.721	27.0	6.42	7.28	21.7	175
10	4	13	2.37	7.722	26.8	3.32	7.26	20.1	176
15	6	54	2.17	7.810	26.7	3.16	7.30	18.24	176
20	9	12	2.17	7.823	26.5	3.08	7.29	18.4	177
25	12	34	1.99	7.831	26.4	3.07	7.28	18.55	176
30	16	19	1.84	7.832	26.4	3.09	7.28	18.56	177
35	19	48	1.77	7.840	26.4	3.09	7.28	18.56	176
40	23	9	1.73	7.841	26.4	3.08	7.27	18.57	175
	Total v	olume purged (L)	40	No. bore v	volumes purged	2.2			
Time Finish	2.00								

2:00 hr:min

Water Quality Meter type: TDS 90FLMV Water Dipper type: Solist interface dipper Pumping Method: Waterra Tubing with Submersible Pump and Regulator

SAMPLING RECORD

Minimum Water Level during Purging (m):		7.841	F		Container:	Preservation:
Rinsate sample taken BEFORE / AFTER this we	ell?	NO	Rinsate ID:	-	Vial 2	NaHS04
Samples taken? YES Duplicate taken?	P NO	a NeHS04		none		
Time between sampling & purging:		Instant			1L Glass 1	none
Water level prior to sampling (m):		7.841			125ml Plastic 1	none
Samples filtered? YES for metals	Filter method:	0.45 mm f	filter		500 ml Plastic	Na0H

OBSERVATIONS

Samples:		Pale Brown/ clear	Turbidit Sheen	-	Medium NO	
Weather Conditions: Sam	0	Sunny, windy	Temperature	21°C		
	ious Week was perged	Sunny, windy clear after first 9 minutes.	Temperature	21°C		_
r to "Groundwatar Sampling Guidelinge" Vi	ED4 D. H	<i>co</i> * !		_		Golder

PROJECT INFORMAT	ION		
Project Number:	087661006	Site Location:	SHEEP HILL
Client:	CENTREX	Date of Sampling:	5-Nov-08
Purged By:	MH	Sampled By:	MH

GROUNDWATER BORE DATA

Diameter of Column (mm)	50			Interf
Diameter of Bore (mm)	100			Depth
Standing Water Level (m BRP)	9.169	-		Deptl
Total Depth of Bore (m BRP)	11.726	-		Thick
Depth of Water in Column (m)	2.557	Bore Volume (L)	9.5	
Standpipe height (m above gl)				
BRP - Balow Rafaranca Point		-		

Interface probe used?	YES
Depth to product (m BRP)	-
Depth to water (m BRP)	9.169
Thickness of product (m BRP)	-

GW08

BRP - Below Reference Point

PURGING RECORD AND FIELD PARAMETER MEASUREMENTS

Time Start hr: min	2:20								
Volume Purged (L) (accum)	Time (min) (accum)	Time (seconds)	Rate, L/min	Depth to WL, m	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (mS/cm)	Redox Potential (mV)
5	4	31	1.11	9.183	27.1	4.99	7.49	14.66	160
10	9	48	1.02	9.276	27.0	14.05	7.48	14.24	161
15	13	56	1.08	9.459	26.8	2.13	7.40	13.06	163
20	18	29	1.08	9.761	26.8	2.21	7.40	13.03	164
25	22	17	1.12	10.392	26.8	2.23	7.39	13.02	165
30	26	7	1.15	10.398	26.8	2.24	7.38	13.03	165
	Total v	olume purged (L)	30	No. bore v	olumes purged	3.1			
Time Finish hr:min	2:55								

Water Quality Meter type: TDS 90FLMV Water Dipper type: Solist interface dipper Pumping Method: Waterra Tubing with Submersible Pump and Regulator

SAMPLING RECORD

Minimum Water Level during Purging (m):	1	0.398		Container:	Preservation:
Rinsate sample taken BEFORE / AFTER this we	-11?	NO Rinsate ID:	-	Vial 2	NaHS04
Samples taken? YES Duplicate taken?	NO	Duplicate ID:	-	250ml Plastic 1	none
Time between sampling & purging:	I	nstant		1L Glass 1	none
Water level prior to sampling (m):	1	0.398		125ml Plastic 1	none
Samples filtered? YES for metals	Filter method: 0).45 mm filter		500 ml Plastic 1	Na0H
OBSERVATIONS					

Samples:	Colour:	Pale Brown/ clear	Turbidity		Medium	
	Odour:	NIL	Sheen	,	NO	
Weather Conditions:	Sampling Day	Sunny, windy	Temperature	25°C		_
	Previous Week	Sunny, windy	Temperature	25°C		_
Notes:						

APPENDIX G Summary Tables of Analytical Data - Groundwater

APPENDIX G.1 Job No. 087661006 - Groundwater Chemistry Results (Inorganics) Centrex Metals - Sheep Hill Marine Port Facility

														Metals											
		Hd	Total Dissolved Solids	Aluminium	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Molybdenum	Nickel	Selenium	Thallium	Tin	Vanadium	Zinc	Silver	Mercury	Sulphate	Cyanide (total)
		pH Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EQL		0.01	1	0.01	0.001	0.001	0.001	0.0001	0.001	0.001	0.001	0.05	0.001	0.001	0.001	0.001	0.01	0.001	0.001	0.01	0.005	0.001	0.0001	1	0.004
GROUNDWATE	R CHEMICAL RESULTS	(INORGANI	CS)																						
Sample ID	Sample Date																								
GW01	5/11/2008	9.52	2240		< 0.001	0.001	< 0.001	0.0002	0.012	0.001	0.008	< 0.05	< 0.001	0.009	0.06	0.005	<u>0.157</u>	< 0.001	< 0.001	0.03	0.006	< 0.001	< 0.0001	342	0.04
GW02	5/11/2008	7.96	6920		< 0.001	< 0.001	< 0.001	0.0002	0.004	0.001	0.003	< 0.05	< 0.001	0.184	0.008	0.002	0.041	< 0.001	< 0.001	< 0.01	0.16	0.001	< 0.0001	767	0.005
GW03	5/11/2008	6.85	19000		< 0.001	< 0.001	< 0.001	0.0012	< 0.001	0.004	0.004	< 0.05	< 0.001	0.349	0.005	0.01	0.044	0.001	< 0.001	< 0.01	0.222	0.006	< 0.0001	2070	< 0.004
GW04	5/11/2008	8.14	3770	< 0.01		< 0.001		< 0.0001	< 0.001		0.003	< 0.05	< 0.001	0.103		0.006					0.053		0.0002	375	
GW05	5/11/2008	8.04	786		< 0.001	< 0.001	< 0.001	0.0002	< 0.001	< 0.001	0.002	< 0.05	< 0.001	0.013	0.034	0.003	< 0.01	< 0.001	< 0.001	< 0.01	0.021	<0.001	< 0.0001	60	< 0.004
GW06	5/11/2008	7.74	18100	< 0.01		< 0.001		0.0012	0.001		0.01	< 0.5	< 0.001	0.804		0.014					0.385		< 0.0001	1780	
GW07	5/11/2008	7.67	19500		< 0.001	< 0.001	< 0.001	0.0019	< 0.001	0.001	0.003	< 0.05	< 0.001	0.041	0.007	0.006	0.036	< 0.001	< 0.001	< 0.01	0.07	0.006	< 0.0001	1620	< 0.004
GW08	5/11/2008	7.61	13000		< 0.001	< 0.001	< 0.001	0.0062	<0.001	0.002	0.003	< 0.05	<0.001	0.064	0.004	0.003	0.042	< 0.001	< 0.001	<0.01	0.086	0.004	<0.0001	1370	< 0.004

ISSESSMENT CRITERIA/GUIDELINES																							
SA EPA EPP - Aquaculture					0.02	0.0001		0.02					0.1		0.1				0.005		0.0005		
SA EPA EPP - Irrigation	4.5-9		1		0.1	0.1	0.01	1	0.05	0.2	1	0.2	2	0.01	0.2	0.02		0.1	2		0.002		
SA EPA EPP - Livestock			5		0.5	0.1	0.01	1	1	0.5		0.1		0.01	1	0.02		0.1	20		0.002	1000	
SA EPA EPP - Potable	6.5-8.5			0.003	0.007		0.002			2		0.01	0.5	0.05	0.02	0.01				0.1	0.001	500	0.08
SA EPA EPP Aquatic Fresh	6.5-9		0.1	0.03	0.05	0.004	0.002			0.01	1	0.005			0.15	0.005	0.004		0.05	0.0001	0.0001		
SA EPA EPP Aquatic Marine				0.5	0.05		0.002			0.01		0.005			0.015	0.07	0.02		0.05	0.001	0.0001		

STATISTICAL SUMMARY																								
Number of Results	8	8	2	6	8	6	8	8	6	8	8	8	8	6	8	6	6	6	6	8	6	8	8	6
Number of Detects	8	9	1	0	1	0	7	3	5	8	0	0	8	6	8	5	1	0	1	9	4	1	8	2
Minimum Concentration	6.85	786	< 0.01	< 0.001	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.001	0.002	< 0.05	< 0.001	0.009	0.004	0.002	<0.01	< 0.001	< 0.001	< 0.01	0.006	< 0.001	< 0.0001	60	< 0.004
Maximum Concentration	9.52	19500	< 0.01	< 0.001	0.001	< 0.001	0.0062	0.012	0.004	0.01	<0.5	< 0.001	0.804	0.06	0.014	0.157	0.001	< 0.001	0.03	0.385	0.006	0.0002	2070	0.04
Average Concentration	8.00	9636	0.007	0.001	0.001	0.0005	0.0012	0.0022	0.002	0.043	0.050	0.0005	0.190	0.020	0.006	0.054	0.001	0.001	0.009	0.120	0.003	0.00007	959	0.009
Standard Deviation	0.71	7758	0.0029	0	0.0002	0	0.002	0.0038	0.0013	0.0027	0.075	0	0.25	0.023	0.0038	0.052	0.0002	0	0.01	0.12	0.0027	0.00005	757	0.015
95% UCL	8.49	15012	0.0107	-	0.0011	-	0.0026	0.00483	0.0026	0.0452	0.102	-	0.3632	0.0384	0.0086	0.0956	0.0007	-	0.0172	0.203	0.00516	0.000102	1484	0.02080
Number of Guideline Exceedances(Detect	1	0	0	0	0	0	1	0	0	1	0	0	4	2	0	5	1	0	0	8	4	1	5	0
% of Results at or above the EQL	100	100	33	0	11	0	78	33	83	100	0	0	100	100	100	83	17	0	17	100	67	11	100	33
% of Detects at or above Guidelines	13	0	0	0	0	0	13	0	0	1	0	0	50	25	0	83	0	0	0	100	67	1	63	0

Prepared by:	NJD	Date	21/01/2009
Checked by:	ТНН	Date	5/03/2009

<u>Notes</u> Samples which reported analyte concentrations below the laboratory LOR (EQL) are indicated by a "<" sign, and lighter font. Samples which exceed adopted guideline criteria are indicated by the appropriate formatting.

APPENDIX G.2 Job No. 087661006 - Groundwater Chemistry Results (Organics) Centrex Metals - Sheep Hill Marine Port Facility

		Alka	linity				1	Major Cati	ons and Ar	nions					TP	н				BTEX				OCPs/OPPs			PAH			
	⊟ Hydroxide Alkalinity (as P CaCO3)	Detal Alkalinity (as CaCO3)	Bicarbonate	Carbonate ^{T/b}	Calcium T/bu	∭agnesium ⊐Z	-T/bu	mg/L	√bew Total Cations	Fluoride M/D	Chloride	Total Anions ⊤/bew	% Ionic Balance	Z C 6 - C 9 Fraction	Z10 - C14 Fraction	Z/bu C15 - C28 Fraction	∑ Z9-C36 Fraction	Benzene ma/L	mg/L	mg/L	Ž Xylenes (m/p/o)	∑ Total Aldrin & Dieldrin	Total DDT + DDE + DDD	√pm √pm	sedo ma/L	⊠ Ben zo(a)pyrene	РАН	CHCs	Phenois	
EQL	1	1	1	1	1	1	1	1	0.01		1	0.01	0.01	0.02	0.05		0.05	0.001			0.001 - 0.002			ing/c	ing/c	0.002		0.113		0.001
GROUNDWATER CHEMICAL RESULTS	ORGANIC	3)	· ·	· · · · ·					0.01		· 1	0.01	0.01	0.02	0.00	0.1	0.00	0.001	0.002	0.002	2.001 0.002	5.001	5.000			0.002		0.110		0.001
Sample ID Sample Date				1	1	1	1	1		T T	1		-	1	1		1 1				1				1		1	-		
GW01 5/11/2008	<1	274	178	96	17	8	22	795	36.7	11.4	868	36.8	0.2	< 0.02	< 0.05	0.1	0.14	< 0.001	< 0.005	< 0.002	<0.001 - <0.002	<0.001	< 0.003	=0.0005 - <0.002	<0.0005 - <0.002	< 0.002	<0.002 - <0.004	< 0.113	<0.002 - <0.004	< 0.001
GW02 5/11/2008	<1	241	241	<1	152	164	53	2200	118	5.4		128	3.99	<0.02	<0.05		0.14	< 0.001	< 0.005	< 0.002	<0.001 - <0.002	<0.001		<0.0005 - <0.002	<0.0005 - <0.002	< 0.002	<0.002 - <0.004	<0.113	<0.002 - <0.004	< 0.001
GW03 5/11/2008	<1	109	109	<1	242	630	81	5860	321	1.9		301	3.12	<0.02	<0.05		< 0.05	< 0.001	<0.005		<0.001 - <0.002	< 0.001		0.0005 - <0.002	<0.0005 - <0.002	< 0.002	<0.002 - <0.004	<0.113	<0.002 - <0.004	<0.001
GW04 5/11/2008	<1	296	296	<1	90	69	34	1190	62.7		1800	64.5	1.46	50.02	-0.00	50.1	50.00	50.001	40.000	50.00L	50.001 S0.002	-0.001	40.000	0.0000 40.002	50.0000 S0.002	50.002	50.002 50.001	50.110	30.002 30.001	50.001
GW05 5/11/2008	<1	211	211	<1	40	12	9	223	12.9	0.9		12.5	1.63	< 0.02	< 0.05	0.2	< 0.05	< 0.001	< 0.005	< 0.002	<0.001 - <0.002	<0.001	<0.003	:0.0005 - <0.002	<0.0005 - <0.002	< 0.002	<0.002 - <0.004	< 0.113	<0.002 - <0.004	< 0.001
GW06 5/11/2008	<1	137	137	<1	340	516	134	5610	307		8550	281	4.43	50.02	-0.00	0.2	50.00	50.001	40.000	50.00L	50.001 S0.002		40.000	0.0000 40.002	50.0000 50.00L	50.002	50.002 50.001	50.110	30.002 30.001	50.001
GW07 5/11/2008	<1	216	216	<1	357	580	93	6070	332	3.1		306	4.05	< 0.02	< 0.05	< 0.1	< 0.05	< 0.001	< 0.005	< 0.002	<0.001 - <0.002	< 0.001	<0.003	:0.0005 - <0.002	<0.0005 - <0.002	< 0.002	<0.002 - <0.004	< 0.113	<0.002 - <0.004	< 0.001
GW08 5/11/2008	<1	154	154	<1	183	374	78	4680	246	1.6		225	4.36	<0.02	<0.05	0.1	<0.05	< 0.001	< 0.005	< 0.002		< 0.001		0.0005 - <0.002	<0.0005 - <0.002	<0.002	<0.002 - <0.004	<0.113	<0.002 - <0.004	<0.001
ASSESSMENT CRITERIA/GUIDELINES SA EPA EPP - Aquaculture SA EPA EPP - Inigation SA EPA EPP - Livestock										1								0.04			0.04									0.0005
SA EPA EPP - Potable										1.5								0.001	0.8	0.3	1.101							1.401	0.3	
SA EPA EPP Aquatic Fresh																		0.3	0.3		0.6							1.2	1.2	1e-006
SA EPA EPP Aquatic Marine																		0.3			0.3								0.05	4e-006
Number of Results	8	8	0		8	8	8	8	8	6	8	8	8	6	6	0	6	0	6	6	0	6		0	6	6	<u> </u>	<u> </u>	0	6
	8	8	8	8	8	8	8		8		8	8	8		6	6	6	6	6	6	6	6	0	0	6	6	6	6	6	6
Number of Detects Minimum Concentration	<1	8	8	<1	8	8	9	8 223	8	0.9		8	0.2	0	<0.05	4	<0.05		<0.005		<0.001 - <0.002		-0.002	U 0000E -0.000	U	<0.002	<0.002 - <0.004	<0.113	<0.002 - <0.004	0 <0.001
								6070		0.9								<0.001			<0.001 - <0.002									
Maximum Concentration	<1	307	307	96	357	630	134		332	4.1		306	4.43	<0.02	<0.05		0.14	<0.001	< 0.005	<0.002	<0.001 - <0.002		<0.003 <			< 0.002	<0.002 - <0.004	<0.113 0.057	<0.002 - <0.004	<0.001 0.0005
Average Concentration	0.5	216	205	11	168	269	60	3082	166			157							0.0025		-				-	0.001	-		-	
Median Concentration	0.5	216	211	0.5	152	164	53	2200	118	2.5		128	3.12	0.01	0.025		0.025	0.0005	0.0025	0.001	0.0025		0.0015		-	0.001	-	0.0565	-	0.0005
Standard Deviation	0	71	68	32	124	256	40	2430	133	3.9		121	1.5	0	0		0.053	0	0	0	0	0	0	0	0	0	0	0	0	0
95% UCL	•	265.2	252.1	33.2	253.9	446.4	87.7	4765.9	258.2	7.2206		240.8	3.839	•	-		0.10041		•	-	-	-	-	-	-	•	-	-	-	-
Number of Guideline Exceedances(Detect	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
% of Results at or above the EOI	0	100	100	11	100	100	100	100	100	100		100	100	0	0	67	33	0		0		0	0	0		0		0	0	0

 Notes and Abbreviations

 Samples which reported analyte concentrations below the laboratory LOR (EOL) are indicated by a "<" sign, and lighter font.</td>

 Samples which exceed adopted guideline criteria are indicated by the appropriate formatting.

 TPH = Total Petroleum Hydrocarbons

 DFEX = Bruzen, turlene. ethythemzene and xylenes

 OCP= 0 organochorine Pesticides

 PAH = Polycyclic Aromatic Hydrocarbons

 CHCs = Cholmatel Hydrocarbons

 PCHs = Polycyclic Aromatic Hydrocarbons

 PCRs = Polychlorinated Hydrocarbons

 PCRs = Polychlorinated Hydrocarbons

 PCRs = Polychlorinated Biphenols

% of Results at or above the EQL % of Detects at or above Guidelines

Prepared by:	NJD	Date	21/01/2009
Checked by:	THH	Date	5/03/2009

APPENDIX G.3 Job No. 087661006 - Groundwater Chemistry Results (QA/QC - RPDs) Centrex Metals - Sheep Hill Marine Port Facility

EQL Sample ID

GW04 GW0104

GW04 GW204 5

							Meta	als						Alka	linity		Ani	ons		М	ajor Catio	ns	1			
		Ha DH Units	Arsenic T/am	Cadmium //	Zhromium T	Copper T/Dm	uoj mg/L	Lead Wa/T		Nickel No	Zinc T/bu	D Mercury (Filtered)	Hydroxide Alkalinity (as CaCO3)	D □ □ □	D Bicarbonate	Carbonate 7/0m	Chloride T/Dm	med ∖_/	Calcium	magnesium T	- Potassium	Sodium Ma/T	Total Cations	႔ Ionic Balance	Sulphate	Total Dissolved Solids
													ing/∟	ing/∟	ilig/∟	nig/L	IIIg/L		ing/∟	ing/∟	IIIg/L	ing/∟			iiig/∟	ing/∟
		0.01	0.001	0.0001	0.001	0.001	0.05	0.001	0.001	0.001	0.005	0.0001	1	1	1	1	1	0.01	1	1	1	1	0.01	0.01	1	1
Sample Date	Laboratory																									
5/11/2008	ALS Syd	8.14	< 0.001	< 0.001	< 0.001	0.003	< 0.05	< 0.001	0.103	0.006	0.053	0.0002	<1	296	296	<1	1800	64.5	90	69	34	1190	62.7	1.46	342	3770
5/11/2008	ALS Syd	8.16	< 0.001	<0.0001	<0.001	0.003	<0.05	< 0.001	0.131	0.005	0.066	< 0.0001	<1	307	307	<1	1610	56.8	89	65	33	1110	58.9	1.81	251	3410
	RPD (%)	0.25	NA	NA	NA	0	NA	NA	24	18	22	NA	NA	4	4	NA	11	13	1	6	3	7	6	21	31	10
5/11/2008	ALS Syd	8.14	<0.001	< 0.001	<0.001	0.003	< 0.05	< 0.001	0.103	0.006	0.053	0.0002	<1	296	296	<1	1800	64.5	90	69	34	1190	62.7	1.46	342	3770
3/11/2008	Labmark	7.7	< 0.02	< 0.0002	<0.005	< 0.01	< 0.05	< 0.001	0.133	< 0.005	0.057	< 0.0001	-	299	-	-	1850	-	106	96.1	37.3	1420	61.74	-	377	3950
	RPD (%)	5.56	NA	NA	NA	NA	NA	NA	25	NA	7	NA	NA	1	NA	NA	3	NA	16	33	9	18	2	NA	10	5

Prepared by:	NJD	Date:	20/01/2009
Checked by:	TH	Date:	5/03/2009

APPENDIX H Summary Tables of Analytical Data - Soil

							1					1	M	etals											
				inium	nony	senic	lium	mir	mium	#	er			esium	anese	ury	pdenum	-	ium			dium		ide (total)	luoride
EQL			면 pH Units	mg/kg	mg/kg	Ar	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	<u>5</u> mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Nicke mg/kg	mg/kg	mg/kg	j L mg/kg	mg/kg	ng/kg	mg/kg	mg/kg 40
	L RESULTS (INORGANIC Sample Depth (m) 0-0.2) - Borehole Samples Sample Date 23/10/2008	9.1	6300	5	<3		<0.3	13	2	38	10000	3	16000	61	0.06	2	13	5	2	3	5	45		40
BH01/02 BH01/03 BH02/01	0.4-0.5 1.5-1.8 0-0.1	23/10/2008 23/10/2008 23/10/2008 23/10/2008	9.7 9.7 9	17000 2500 7100		<3 <3 <3		<0.3 <0.3 <0.3	27 5.3 7.8		14 3.6 65	31000 3800 15000	3 3 4	17000 1200 4500	130 15 100	<0.05 <0.05 <0.05		23 2.6 8.2					26 170 28		
BH02/02 BH02/03 BH03/01	0.4-0.7 0.9-1.2 0-0.2	23/10/2008 23/10/2008 24/10/2008	9.2 9.5 8.7	5500 9200 10000		<3 <3 <3		<0.3 <0.3 <0.3	4.9 7.3 14		110 140 21	12000 25000 18000	2 3 9.1	9900 9800 3300	80 160 150	0.07 <0.05 <0.05		8.3 13 9.7					21 41 33		
BH03/02 BH03/03 BH04/01	0.4-0.6 1.4-1.5 0-0.2	24/10/2008 24/10/2008 26/10/2008	9.1 9.4 9	8600 7300 7300		<3 <3 <3		<0.3 <0.3 <0.3	11 11 11		25 15 38	14000 14000 16000	4 5 5	13000 4600 4000	62 61 97	<0.05 <0.05 <0.05		8.8 6.3 8.8					12 9 20		
BH04/02 BH04/03 BH05/01	0.5-0.8 1.5-1.6 0-0.2	26/10/2008 26/10/2008 26/10/2008 28/10/2008	9.1 9.5 8.8	12000 9000 7900		<3 <3 <3		0.3 <0.3	23 8.4 12		220 120 28	33000 23000 24000	5	11000 6900 3900	220 230 130	<0.05 <0.05 <0.05		17 13 8.9					40 32 59		
BH05/02 BH05/03 BH06/01	0.4-0.6 0.8-1 0-0.1	28/10/2009 28/10/2010 21/10/2008	9.5 9.5 8.6	10000 13000 13000		<3 <3 <3		0.3 0.3 <0.3	2.6 2.1 20		93 88 38	38000 40000 30000	5	11000 12000 7800	82 120 130	<0.05 <0.05 <0.05		12 13 14					34 40 190		
BH06/02 BH06/03 BH07/01	0.3-0.5 0.8-0.9 0-0.2	21/10/2008 21/10/2008 29/10/2008	9.7 9.6 8.9	15000 13000 12000		<3 <3		<0.3 0.3	26 22 18		36 92 17	37000 38000 18000	7 17 6	17000 11000 3300	140 160	<0.05 <0.05 <0.05		15 20 10					34 42 21		
BH07/02 BH07/03 BH08/01	1.2-1.4 1.9-2 0-0.2	29/10/2008 29/10/2008 30/10/2008	8.9 9 9.3	8000 7700 23000		<3 <3 <3		<0.3 <0.3 0.3	11 11 27		16 13 28	11000 11000 29000	4 3 38	5100 11000 7000	77 76 180	<0.05 <0.05 0.07		7.3 6.8 19					58 9.7 1600		
BH08/02 BH08/03	0.4-0.5 1.5-1.8 L RESULTS (INORGANIC)	30/10/2008 30/10/2008	9.6 9.4	9900 12000		<3 <3		<0.3 <0.3	14 15		11 21	14000 15000	5	3500 14000	80 160	<0.05 <0.05		9.2 12					14 1500		
Sample ID G01 G02	Sample Depth	Sample Date 6/11/2008 6/11/2008	9.3 8.2	9260 7480	<0.05	<5 <5		<1	22 16		17	18100	7	3540 2390		<0.1 0.1		12					20		
G03 G04 G05	-	6/11/2008 6/11/2008 6/11/2008	8.4 7.6 8.3	5660 7070 5630	<0.05 <0.05 <0.05	<5 <5 <5		~~~~	11 17 14		9 11 7	8160 14100 10600	<5 7 <5	1810 1350 1480		<0.1 <0.1 <0.1		4 6 4					20 11 13		
G06 SOIL CHEMICA	L RESULTS (INORGANIC	6/11/2008) - Test Pit Samples	8.5	5920	<0.05	<5		<1	10	I	8	7640	<5	2440		<0.1		4			<u> </u>	I	10		
Sample ID TP01/01 TP01/02 TP01/03	Sample Depth (m) 0-0.05 0.05-0.15	Sample Date 7/11/2008 7/11/2008	8.3 8.6	11100 14200		<5 <5		1	19 20 14		17 25	13100 13800 9750	5	2510 3580 12900		<0.1		12 15 11					14 15		
TP01/05 TP02/01	0.35-0.6 1.8-2 0-0.15	7/11/2008 7/11/2008 7/11/2008	9.3 10.1 6.5	10100 15200 6140		<5 <5 <5		~~~~	25 16	10	24 27 9	16600 11900	<5 <5	9150 1280		<0.1 <0.1 <0.1		14 7					8 15 11		
TP02/02 TP02/03 TP03/01 TP03/02	0.15-0.3 0.3-0.6 0-0.15 0.15 0.2	7/11/2008 7/11/2008 7/11/2008 7/11/2008	8.3 9.6 7.4	18400 22300	<5 <5	<5 <5 <5	1		36 26 18	10 7	27 33 10	19400	10 7 6	10400 7140		<0.1 <0.1 <0.1 0.2	<2	21 19 10	<5 <5	~2	<5 <5	51 28	27 23 15 28	<1	130 100
TP03/02 TP04/01 TP04/04 TP05/01	0.15-0.3 0-0.1 1.6-2.1 0-0.2	7/11/2008 7/11/2008 7/11/2008 4/11/2008	9.2 7.2 10 7.8	22300 8460 6990 15000		<5 <5 <5		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33 18 14		26 12 12	24800 13400 10900 21400	9 6 <5	7140 1870 4280 4740		0.2 <0.1 <0.1		22 10 9 16					15 11		
TP05/01 TP05/02 TP05/04 TP05/05	0-0.2 0.3-0.6 1-1.3 1.7-2	4/11/2008 4/11/2008 4/11/2008 4/11/2008	7.8 8.2 8.5 9.2	23500	<5	<5 <5 6	1	< < <	29 40 38	15	26 33 68	21400	9 14 10	4740 8780		<0.1 <0.1 <0.1	<2	16 22 27	<5	<2	<5	64	28 36 38	<1	340
TP05/05 TP06/01 TP06/02 TP06/03	1.7-2 0-0.05 0.4-0.8 1.4-1.8	4/11/2008 4/11/2008 4/11/2008 4/11/2008	9.2 9.3 8.8 10	3650 5260 15400	-	<5 <5 <5		< < <	8 13 22	-	<5 11 16	5580 10000 16600	<5 <5	820 1590 4170		<0.1 <0.1		4 8				-	7 11 18		
TP06/03 TP07/01 TP07/02 TP07/04	1.4-1.8 0-0.15 0.15-0.3 1-1.4	4/11/2008 6/11/2008 6/11/2008 6/11/2008	10 7.3 8.3 9.7	15400 6540 17200 12000		\$ \$ \$ \$		~ ~ ~	22 15 27 19		16 8 21 24	16600 10700 21400 13200	6 <5 8 5	4170 1210 3980 22300		<0.1 <0.1 <0.1		12 8 20 13					18 9 21 12		
TP08/01 TP08/02 TP08/04	0-0.3 0.3-0.6 1.6-2	5/11/2008 5/11/2008 5/11/2008 5/11/2008	9.2 9.4	12000 12000 9840 15200		<5 <5 <5		~~~~	17		23 19	12500 9770 17100	<5 <5 7	4650 8680 14500		<0.1 <0.1 <0.1		14 11					12 13 10 17		
TP09/01 TP09/02	0-0.15 0.15-0.3	5/11/2008 5/11/2008	9.9 7.7 8.6	7300 17400		<5 <5		< √	23 18 30		22 10 25	14000 24700	6 10	1270 3890		<0.1 <0.1		16 8 18					17 12 22 17		
TP09/04 TP10/01 TP10/02 TP10/04	1.2-1.5 0-0.3 0.3-0.45	5/11/2008 4/11/2008 4/11/2008 4/11/2008	9.8 8.3 9.8	19700 7090 7080 13800		<5 <5 <5		~ ~ ~	28 13 6		29 13 70	25300 11200 7200 19900	9 5 8	8820 1540 14400		<0.1 0.1 <0.1		18 7 12					14		
TP11/01 TP11/02	0.8-1.05 0-0.05 0.05-0.2	4/11/2008 4/11/2008	10 8.3 8.6	7380	<5	<5 <5 <5 <5	1	~ ~	12 14 37	10	68 10 38	10900	21 <5 10	27800		<0.1 <0.1 <0.1	<2	12 8 24	<5	<2	<5	55	38 12 27	<1	170
TP11/04 TP12/01 TP12/02	0.8-1 0-0.2 0.2-0.5	4/11/2008 4/11/2008 4/11/2008	10.2 8.4 9.5	15000 9280 10100		6 <5 <5		~ ~	38 18 9		23 20 66	34800 15600 14600	19 6 <5	10900 2900 14700		<0.1 <0.1 <0.1		24 12 15					36 13 9		
TP12/03 TP13/01 TP13/03	1.5-1.8 0-0.1 0.4-0.6	4/11/2008 3/11/2008 3/11/2008	10.1 7.7 9.6	25200 7110 21400		<5 <5 <5		~~~~~	15 15 29		85 13 40	51800 11400 22200	<5 <5 8	21200 1680 11300		<0.1 0.2 <0.1		45 8 19					39 12 20		
TP13/04 TP14/01 TP14/02 TP14/04	1.6-1.9 0-0.25 0.3-0.6 1 1-1 4	3/11/2008 3/11/2008 3/11/2008 3/11/2008	9.8 9 9.9 10.1	12500 8140 26100 33900		5 5 5 5		~ ~ ~	20 16 11		26 26 36	30200 19400 41200 58200	11 <5 <5 <5	5140 4070 31700 36600		<0.1 <0.1 <0.1		10 11 17					38 19 50		
TP15/01 TP15/02	0-0.1 0.1-0.3	6/11/2008 6/11/2008	7.3 8.9	7410 17200		<5 19		~	13 19		13 18 25	16400 30200	7	2740 6480		<0.1 <0.1		20 7 8					75 18 27		
TP15/03 TP16/01 TP16/02 TP16/04	0.4-0.6 0-0.1 0.1-0.2	6/11/2008 6/11/2008 6/11/2008	9.5 7.8 8.4	11000 8200 21200		<5 <5 7		~ ~ ~	10 17 32 11		20 24 58	17400 17700 36400	5 7 15	10200 3050 6250		<0.1 <0.1 <0.1		6 10 21					13 15 26		
TP17/01 TP17/02	0.5-0.8 0-0.2 0.2-0.3	6/11/2008 6/11/2008 6/11/2008	9.9 9.1 9.4	10100	<5	<5 <5 <5	<1	~	29 20	10	68 45 104	14700	<5 7 <5	13000		<0.1 <0.1 <0.1	<2	13 17 16	<5	<2	<5	55	9 20 13	<1	260
TP17/03 TP18/01 TP18/02 TP18/03	0.3-0.5 0-0.15 0.15-0.45 0.45-0.9	6/11/2008 6/11/2008 6/11/2008 6/11/2008	9.6 10 9.6 9.4	9990 11900 9920 8860		5 5 5 5 5		र र र	22 3 10 16		165 110 63 37	14700 28800 19200 19300	<5 <5	20300 14400 9480 4430		<0.1 <0.1 <0.1		18 14 11					14 58 25 20		
TP19/03 TP19/03 TP19/04	0-0.1 0.7-1 1.5-2	4/11/2008 4/11/2008 4/11/2008 4/11/2008	9.4 8.5 8.5 8.8	9750 17200		<5 <5		<	19		14 26	13300 23800	5 10	2940 7470		<0.1 <0.1 <0.1		10					20 21 28		
TP19/04 TP19/05 TP20/01 TP20/02	2-2.4 0-0.2 0.4-0.7	4/11/2008 4/11/2008 3/11/2008 3/11/2008	8.5 9.7	6180 9080 16000		<5		<1	9 18 13		13 24 56	7900 15700 33000	<5 5	8900 3260 29300		<0.1 <0.1 <0.1		8 12 15					12 13 19		
TP20/02 TP20/03 TP21/01 TP21/02	0.4-0.7 0.25-1 0-0.01 0.1-0.2	3/11/2008 3/11/2008 3/11/2008 3/11/2008	9.7 10.3 9.1 9.1	18100 18100 11400 13400		<5		~	11 22 24		69 29 41	57700 18000 19500	<5	17900 6020 8240		<0.1 <0.1 <0.1		16 15 19					34 16 17		
TP21/02 TP21/04 TP22/01 TP22/02	0.1-0.2 0.5-0.7 0-0.5 0.1-0.2	3/11/2008 3/11/2008 3/11/2008 3/11/2008	9.1 10 8.6 9	12800	<5	<5 <5 <5	<1	~~~~	24 38 12 21	4	41 78 10 46	26500	6 <5	4500		<0.1 <0.1 <0.1	<2	37 6 11	<5	<2	<5	21	16 10 11	<1	130
TP22/02 TP22/04 TP23/01 TP23/02	0.4-0.6 0-0.15 0.15-0.3	3/11/2008 3/11/2008 6/11/2008 6/11/2008	9 7.8 7.6	13900 7780 7800		<5 <5 <5		~~~	18 14 13		121 12 11	27400 27400 17200 16400	<5	20500 2120 2030		<0.1 <0.1 <0.1		14 6 5					9 15 15		
TP24/02 TP24/02 TP24/02 TP24/03	0-0.2 0.2-0.5 0.5-0.7	6/11/2008 6/11/2008 6/11/2008 6/11/2008	9.3 9.9	15600 9150 9680		<5 <5 6		~	27 10 10		50 30 67	28000 19600 15400	10	6070 6910 16100		<0.1 <0.1 <0.1		18 9 10					22 36 18		
TP25/03 TP25/02 TP25/02 TP25/03	0.5-0.7 0-0.15 0.15-0.3 0.3-0.5	5/11/2008 5/11/2008 5/11/2008 5/11/2008	9.9 9.1 9.4 9.3	9680 14900 12400	_E	<5 <5 <5	~	2 2 2 2	36	8	49 40 37	23500 15900	5 7 5	10300		<0.1 <0.1 <0.1	~	10 21 15 16	~*	~	~	46	18 40 27 27	-	370
TP26/01 TP26/03 TP26/04	0.3-0.5 0-0.3 0.7-1 1.7-2	5/11/2008 5/11/2008 5/11/2008 5/11/2008	9.3 7.6 9.1 9.8	7940 16500 8110	~	<5 <5 <5		~ ~ ~	26 17 25 15		37 13 20 14	14500 21500 12000	7 7 <5	1960 7380 2880		<0.1 <0.1 <0.1	~~	7 13 8	~~	~~	~~	64	27 15 21 12	~ ~	
TP25/04 TP27/01 TP27/02 TP27/03	1.7-2 0-0.1 0.1-0.3 0.3-0.6	5/11/2008 5/11/2008 5/11/2008 5/11/2008	9.8 7.3 8.6	7050 7160	<u> </u>	<5 <5 <5		< < < <	15 17 22		14 11 11	12000 11800 15500	<5 5 7	1980 1980		<0.1 <0.1 <0.1		6 7		-	-		12 14 14		
TP27/05 TP28/01 TP28/02	0.3-0.6 1.7-2 0-0.1 0.2-0.4	5/11/2008 5/11/2008 5/11/2008 5/11/2008	9.7 8.6 9.3	11200 6850 10200		<5 <5 <5		~ ~ ~	22 12 15		19 9 11	17200 8580 9640	6 <5 <5	4170 2040 3640		<0.1 <0.1 <0.1		10 4 6					19 13 8		
TP28/02 TP28/04 TP29/01 TP29/02	0.2-0.4 1-1.4 0-0.15 0.15-0.3	5/11/2008 5/11/2008 5/11/2008 5/11/2008	9.3 9.1 8.3 8.8	2810 10200 15100	<u> </u>	0000		2 2 2 2 2	15 12 18 19		11 8 16 38	14500 14800 15600	<5 6 6	1420 2520 6940		<0.1 <0.1 <0.1		6 <2 8 13		-	-		8 <5 12 10		
TP29/02 TP29/03 TP30/01 TP30/02	0.15-0.3 0.4-0.7 0.1-0.4 0.4-0.6	5/11/2008 5/11/2008 5/11/2008 5/11/2008	8.8 9.2 7.6 8.7	15100 13300 7000 6580	<u> </u>	<5 <5 <5		2	19 15 18 16		38 43 8 7	15600 14000 17000 13700	5	12100 1180 1200		<0.1 <0.1 <0.1		13 11 6		-	-	-	10 8 11 7		
TP30/02 TP30/04 TP31/01 TP31/02	0.4-0.6 1.7-2 0-0.1 0.2-0.5	5/11/2008 5/11/2008 6/11/2008 6/11/2008	8.7 9.3 7.4 8.5	6580 17200 10600 15900	<u> </u>	\$ \$ \$ \$		< < < < < < < < < < < < < < <>	16 25 21 23	-	7 20 19 36	13700 22500 17000 17900	<5 7 19 6	1200 5100 2530 6650		<0.1 <0.1 <0.1		6 12 11 17		-	-	-	7 10 1380 15		
TP31/02 TP31/03 TP32/01 TP32/02	0.2-0.5 0.7-1 0-0.1 0.1-0.3	6/11/2008 6/11/2008 6/11/2008 6/11/2008	8.5 8.5 7.2 8.1	15900 15100 5600 8260	<u> </u>	<5 <5 <5		V	23 20 14 19		36 44 6 8	17900 17300 10900 14200	<5 6 8	10100 760 1440		<0.1 <0.1 <0.1		17 19 4 6	-	-	-		15 14 10 8		
TP32/02 TP32/04	1.2-1.4	6/11/2008	9.2	26100	1	<5	1	<1	34	1	26	25900	13	9370	i	<0.1		18	1	1	1	1	12		
ASSESSMENT (NEPM EILs (Inte NEPM HIL F	CRITERIA/ GUIDELINES erim Urban)		+	-	F	20 500	100	3 100		500	100 5000		600 1500		500 7500	1 75	-	60 3000				50	200 35000	2500	
	ce Stns (94) Threshold Con losal Criteria	ncentrations				20	20	3	400^^	170	60		<u>300</u> 300		500	1		60					200		
STATISTICAL S			126	117		5	3	5	124	7	123		89	117	24	10	0	123	0	0	0	7	123	0	7
Minimum Conce Maximum Conce Average Concer	ntration entration htration		6.5 10.3 8.9	2500 33900 11586	<0.05 <5 1.4	<3 19 2.6	<1 1 0.71	<0.3 <1 0.44	2.1 40 18	4 15 9.1	3.6 220 36	3800 58200 19330	2 38 6.1	760 36600 7863	15 230 119	<0.05 0.2 0.051	<2 <2 1	<2 45 13	<5 <5 2.5	<2 <2 1	<5 <5 2.5	21 64 46	<5 1600 60	<1 <1 0.5	100 370 214
Standard Deviati 95% UCL of Mea Number of Guide	ion an Concentration eline Exceedances(Detects	Only)	0.79 9.04 0	5385 12561.76 0	0	1.7 2.90 0	0.27 0.91 0	0.13 0.46 0	8.2 19.44 0	3.4 11.62 0	35 42.16 21	9899 21123.7 0	4.7 6.93 0	6869 9107.7 0	53 140.2 0	0.024 0.06 0	-	6.5 14.14 0	- - 0	-	-	16 57.85 4	228 100.1 3	0	109 294.7 0
% of Detects at o	or above the EQL or above Guidelines		100 0	100 0	0	4	43 0	4	100 0	100 0	99 0	100 0	72 0	100 0	100 0	8 0	0	99 0	0	0	0	100 0	99 0	0	100 0
ŝ	Notes and Abbreviations Chromium III Waste Fill c Samples which reported and Samples which exceed adop	alyte concentrations below	the laborato	ry LOR (EC	QL) are indi	cated by a	"<" sign, a	nd lighter f	ont.												Prepa	ared by	NJD	Date	14/01/2009
	a anno a mar a consectado	goraon io ontena di e li	ourdu by I	oppropr	windt	y															Chec	ked by	тнн	Date	5/03/2009

APPENDIX H.1 Job No. 087661006 - Soil Chemistry Results (Inorganics) Centrex Metals - Sheep Hill Marine Port Facility

1:Mining2010/107661001 - Centrex - Port ElA Approvala - Lipson087661006 Centrex Sheep HillCorrespondence Out/087661006 030 R Rev ESA/087661001 030 Rev ESA/087600 Rev ESA/087

			r		ТРН			м	AH			0	CPs/OPPs			PAHs			
										6	į								
			ction	C14 Fraction	C28 Fraction	action			ne	(Total m/p/o)	a & Dieldrin	DDT+DDE+DDD			rene		ols		
			- C9 Fraction	10 - C14 F	5 - C28 F	C29-C36 Fraction	Benzene	Foluene	Ethylbenzene	Xylenes (To	rotal Aldrin	otal DDT+	fotal OCPs	fotal OPPs	Benzo(a)pyr	otal PAHs	Total Phenols	Total PCBs	vocs
EQL			9 mg/kg 10	5 mg/kg 20	-512 mg/kg 100	mg/kg	8 mg/kg 0.2	P mg/kg 0.5	mg/kg	mg/kg 1.0 - 1.5	mg/kg	mg/kg	mg/kg	₽ mg/kg 0.05 - 0.2	mg/kg	mg/kg	P mg/kg 3	P mg/kg 0.1	mg/kg 0.5 - 5.0
Sample ID BH01/01	L RESULTS (ORGANIC) - E Sample Depth 0-0.2	Sample Date 23/10/2008	<20	<20	<50	<50	<0.5	<0.5	<0.5	<1.5	-		-	-	<0.05	<0.8			
BH01/02 BH01/03 BH02/01	0.4-0.5 1.5-1.8 0-0.1	23/10/2008 23/10/2008 23/10/2008																	
BH02/02 BH02/03 BH03/01	0.4-0.7 0.9-1.2 0-0.2	23/10/2008 23/10/2008 24/10/2008	<20	<20	<50	<50	< 0.5	<0.5	< 0.5	<1.5					<0.05	<0.8			
BH03/02 BH03/03 BH04/01	0.4-0.6 1.4-1.5 0-0.2	24/10/2008 24/10/2008 26/10/2008																	
BH04/02 BH04/03 BH05/01	0.5-0.8 1.5-1.6 0-0.2	26/10/2008 26/10/2008 26/10/2008 28/10/2008					0.5	0.5	.0.5	4.5	_				0.05				
BH05/02 BH05/03 BH06/01	0.4-0.6 0.8-1 0-0.1	28/10/2008 28/10/2009 28/10/2010 21/10/2008	N 20	~20	~	×30	×0.5	×0.5	×0.5	C1.0					×0.05	.0.0			
BH06/02 BH06/03	0.3-0.5 0.8-0.9	21/10/2008 21/10/2008																	
BH07/01 BH07/02 BH07/03	0-0.2 1.2-1.4 1.9-2	29/10/2008 29/10/2008 29/10/2008																	
BH08/01 BH08/02 BH08/03	0-0.2 0.4-0.5 1.5-1.8	30/10/2008 30/10/2008 30/10/2008	<20	<20	300	1700	<0.5	<0.5	<0.5	<1.5					<0.05	<0.8			
G01	L RESULTS (ORGANIC) - 0 Sample Depth	Sample Date 6/11/2008																	
G02 G03 G04	-	6/11/2008 6/11/2008 6/11/2008																	
G05 G06 SOIL CHEMICAI	L RESULTS (ORGANIC) - T	6/11/2008 6/11/2008 Test Pit Samples	<u> </u>																
Sample ID TP01/01 TP01/02 TP01/03	Sample Depth 0-0.05 0.05-0.15 0.35-0.6	Sample Date 7/11/2008 7/11/2008 7/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP01/05 TP02/01	1.8-2 0-0.15	7/11/2008 7/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP02/02 TP02/03 TP03/01 TP03/02	0.15-0.3 0.3-0.6 0-0.15 0.15-0.3	7/11/2008 7/11/2008 7/11/2008 7/11/2008	<10	<50	<100	<100	<0.2 <0.2	<0.5	<0.5	<1.0	<0.1 <0.1	<0.3 <0.3	< 0.05 - 0.2	<1.3	<0.5	<10	<3	<0.1	< 05 - 5.0
TP04/01 TP04/04 TP05/01	0-0.1 1.6-2.1	7/11/2008 7/11/2008 7/11/2008 4/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP05/01 TP05/02 TP05/04 TP05/05	0-0.2 0.3-0.6 1-1.3 1.7-2	4/11/2008 4/11/2008 4/11/2008 4/11/2008	<10 <10	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	<0.1 <0.1	<0.3 <0.3	< 0.05 - 0.2	<1.3 <1.3	<0.5 <0.5	<10 <8	<3	<0.1	< 05 - 5.0
TP06/01 TP06/02 TP06/03	0-0.05 0.4-0.8 1.4-1.8	4/11/2008 4/11/2008 4/11/2008 4/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP07/01 TP07/02 TP07/04	0-0.15 0.15-0.3 1-1.4	6/11/2008 6/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP08/01 TP08/02 TP08/04	0-0.3 0.3-0.6 1.6-2	5/11/2008 5/11/2008 5/11/2008 5/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP09/01 TP09/02	0-0.15 0.15-0.3	5/11/2008 5/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP09/04 TP10/01 TP10/02 TP10/04	1.2-1.5 0-0.3 0.3-0.45 0.8-1.05	5/11/2008 4/11/2008 4/11/2008 4/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP10/04 TP11/01 TP11/02 TP11/04	0.8-1.05 0-0.05 0.05-0.2 0.8-1	4/11/2008 4/11/2008 4/11/2008 4/11/2008	<10 <10	<50	<100 <100	<100 <100	<0.2	<0.5	<0.5	<1.0	<0.1 <0.1	<0.3 <0.3	< 0.05 - 0.2 < 0.05 - 0.2	<1.3 <1.3	<0.5	<10	<3	<0.1	< 05 - 5.0
TP12/01 TP12/02 TP12/03	0.0-0.2 0.2-0.5 1.5-1.8	4/11/2008 4/11/2008 4/11/2008 4/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP13/01 TP13/03 TP13/04	0-0.1 0.4-0.6 1.6-1.9	3/11/2008 3/11/2008 3/11/2008 3/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP14/01 TP14/02 TP14/04	0-0.25 0.3-0.6 1.1-1.4	3/11/2008 3/11/2008 3/11/2008	<10 <10	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5 <0.5	<8 <8			
TP15/01 TP15/02 TP15/03	0-0.1 0.1-0.3 0.4-0.6	6/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP16/01 TP16/02 TP16/04	0-0.1 0.1-0.2 0.5-0.8	6/11/2008 6/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP17/01 TP17/02 TP17/03	0-0.2 0.2-0.3 0.3-0.5	6/11/2008 6/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<10	<3	<0.1	< 05 - 5.0
TP18/01 TP18/02 TP18/03	0-0.15 0.15-0.45 0.45-0.9	6/11/2008 6/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP19/03 TP19/03 TP19/04	0-0.1 0.7-1 1.5-2	4/11/2008 4/11/2008 4/11/2008 4/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP19/04 TP19/05 TP20/01 TP20/02	2-2.4 0-0.2 0.4-0.7	4/11/2008 3/11/2008 3/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP20/02 TP20/03 TP21/01 TP21/02	0.4-0.7 0.25-1 0-0.01 0.1-0.2	3/11/2008 3/11/2008 3/11/2008 3/11/2008									<0.1	<0.3	< 0.05 - 0.2	<1.3					
TP21/02 TP21/04 TP22/01 TP22/02	0.5-0.7 0-0.5 0.1-0.2	3/11/2008 3/11/2008 3/11/2008 3/11/2008	<10 <10	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5 <0.5	<8 <10	<3	<0.1	< 05 - 5.0
TP22/02 TP22/04 TP23/01 TP23/02	0.1-0.2 0.4-0.6 0-0.15 0.15-0.3	3/11/2008 3/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP24/01 TP24/02 TP24/03	0.15-0.3 0-0.2 0.2-0.5 0.5-0.7	6/11/2008 6/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP25/01 TP25/02 TP25/03	0-0.15 0.15-0.3 0.3-0.5	5/11/2008 5/11/2008 5/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8	~	<0.1	<0.5-50
TP26/03 TP26/03 TP26/04	0.3-0.3 0.7-1 1.7-2	5/11/2008 5/11/2008 5/11/2008 5/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1		< 0.05 - 0.2	<1.3	<0.5	<8		- 4/2 1	
TP27/01 TP27/02 TP27/03	0-0.1 0.1-0.3 0.3-0.6	5/11/2008 5/11/2008 5/11/2008	<10	<50 <50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP27/05 TP28/01 TP28/02	0.3-0.0 1.7-2 0-0.1 0.2-0.4	5/11/2008 5/11/2008 5/11/2008 5/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	< 0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP28/04 TP29/01 TP29/02	1-1.4 0-0.15 0.15-0.3	5/11/2008 5/11/2008 5/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP29/02 TP29/03 TP30/01 TP30/02	0.4-0.7 0.1-0.4 0.4-0.6	5/11/2008 5/11/2008 5/11/2008 5/11/2008	<10 <10	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5 <0.5	<8 <8			
TP30/02 TP30/04 TP31/01 TP31/02	0.4-0.6 1.7-2 0-0.1 0.2-0.5	5/11/2008 5/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP31/02 TP32/01 TP32/02	0.2-0.3 0.7-1 0-0.1 0.1-0.3	6/11/2008 6/11/2008 6/11/2008 6/11/2008	<10	<50	<100	<100	<0.2	<0.5	<0.5	<1.0	<0.1	<0.3	< 0.05 - 0.2	<1.3	<0.5	<8			
TP32/02 TP32/04	0.1-0.3	6/11/2008	1				1	1				1			1				

ASSESSMENT CRITERIA/ GUIDELINES															
NEPM EILs (Interim Urban)															
NEPM HIL F								50	1000		5	100		50	
NSW EPA Service Stns (94) Threshold Concentrations	65			1	1.4	3.1	14				1	20			
"Waste Fill' Disposal Criteria	65	100	0	1	3.1	1.4	14	2	2	2	1	5	0.5		

STATISTICAL SUMMARY																	
Number of Detects	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	7
Minimum Concentration	<10	<20	<50	<50	<0.2	< 0.5	< 0.5	<1	< 0.1	< 0.3	< 0.3	<1.3	< 0.05	<0.8	<3	< 0.1	<0.5 - <5.0
Maximum Concentration	<20	<50	300	1700	<0.5	<0.5	< 0.5	<1.5	<0.1	< 0.3	< 0.3	<1.3	<0.5	<10	<3	< 0.1	5
Average Concentration	5.5	24	54	87	0.11	0.25	0.25	0.52	0.05	0.15	0.15	0.65	0.23	3.8	1.5	0.05	0.25
Standard Deviation	1.5	4.4	39	252	0.044	0	0	0.073	0	0	0	0	0.066	1.2	0	0	0
95% UCL of Mean Concentration	5.9483	25.315	65.657	162.32	0.1232	-	-	0.54182	-	-	-	-	0.25	4.15867	-		-
Number of Guideline Exceedances(Detects Only)	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
% of Results at or above the EQL	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	100
% of Detects at or above Guidelines	0	0	0	0.02	0	0	0	0	0	0	0	0	0	0	0	0	0

 Notes and Abbreviations

 Samples which reported analysis concentrations below the laboratory LOR (EQL) are indicated by a "<" sign, and lighter fort.</td>

 Samples which reported analysis concentrations below the laboratory LOR (EQL) are indicated by a "<" sign, and lighter fort.</td>

 Samples which reported analysis concentrations below the laboratory LOR (EQL) are indicated by a "<" sign, and lighter fort.</td>

 Samples which reported analysis concentrations
 Below the appropriate formatting.

 TPH - To granchione Pesticides
 OPP - Organchionel Pesticides

 OPP - Organchiophorous Pesicides
 OPP - Organchiophorous Pesicides

 PCB = Polynchionaned Brakendos
 VOC = Volatile Organic Compounds

Prepared by	NJD	Date	14/01/2009
Checked by	THH	Date	5/03/2009

1:Mining12010/107681001 - Centres - Port EIA Approvals - Lipson/087681006 Centres Sheep HillCorrespondence Out/087681006 030 R Rev ESA/087681001 030 Rev ESA/08768

ChemName Bromophos	Units	Sample ID Sample Date EQL 0.05	TP32/02 6/11/2008	TP32/102 6/11/2008	TP32/202 6/11/2008	RPD Split	RPD Blind	TP02/02 7/11/2008	TP02/102 7/11/2008	TP02/202 7/11/2008	RPD Split	RPD Blind	TP14/01 3/11/2008	TP14/101 3/11/2008	RPD Split	TP29/03 5/11/2008	TP29/103 T 5/11/2008 5	FP29/203 5/11/2008	RPD Split	RPD Blind %		TP25/103 5/11/2008	TP25/203 5/11/2008	RPD Split	%	11112000		TP01/201 7/11/2008	RPD Split	RPD Blind
Bromophos Hexachloropropene Halogenated Benzenes 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	mg/kg mg/kg mg/kg	0.5 0.5 0.5																			<0.5	<0.5 <0.5 <0.5		NA NA NA	NA					
1,2,4-Inchorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg mg/kg mg/kg mg/kg	0.5					-									-					<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5		NA NA NA	NA					
1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg mg/kg mg/kg	0.5																			<0.5 <0.5 <0.5	<0.5 <0.5		NA NA	NA NA					
1,4-Dichlorobenzene 2-Chlorobluene 4-Chlorobluene	mg/kg mg/kg	0.5																			<0.5 <0.5 <0.5	<0.5 <0.5		NA NA NA	NA NA					
Bromobenzene Chlorobenzene	mg/kg mg/kg mg/kg	0.5					-		-		-	-	-	-	-	-		-	-	-	<0.5	<0.5 <0.5 <0.5	-	NA NA	NA				-	
Hexachlorobenzene Hexachlorobenzene Pentachlorobenzene	mg/kg mg/kg mg/kg	0.05					-				-		<0.05	-0.05	NA ·						<0.05 <0.5	<1 <0.05 <0.5		NA NA NA	NA	-0.05	<0.05		NA ·	NA ·
Halogenated Phenols 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,6-Dichlorophenol	mg/kg mg/kg	0.5			÷	1	1			:			- :		-			÷			<0.5 <0.5 <0.5 <0.5	<0.5 -0.5 -0.5 -0.5		NA NA NA	NA NA		÷			- :
	mg/kg mg/kg mg/kg	0.5 0.5					-				-																			
Pentachlorophenol Inorganics Aluminium Antimony	mg/kg mg/kg	1	8260	8620	3300	4.3	85.8			6200	NA	NA	8140	7820	4.0	13300	13400	6900	0.7	63.4	<1	<1 6	5900	NA NA NA	NA	11100	12100	4000	8.6	94.0
Arsenic Beryllium	mg/kg mg/kg mg/kg	1	-6	<5	1	NA		-6	<5	1	NA ·		4		NA ·	<5	<5		NA		<1	<5 <1	- <1	NA	NA	<5	<5	1	NA	NA ·
Cadmium Chromium Cobalt	mg/kg mg/kg mg/kg		<1 19	<1 18	<0.1 14	NA 5.4	NA 30.3	<1 36	<1 40	<0.1 23	NA 10.5 16.9	NA 44.1	<1 16	<1 16	NA 0.0 8.0	<1 15	<1 15 ·	<0.1 9		NA 50.0	<1 26 8	<1 22 8	<0.1 14 - 26	0.0	NA 60.0 NA	<1 19 17	<1 20	<0.1 11	NA 5.1	NA 53.3
Copper Iron Lead Magnesium	mg/kg mg/kg mg/kg	5 50 5	8 14200 8 1440		7 12300 7 18	0.0 3.6 0.0 1.4	13.3 14.3 13.3 195.1	27 10	32 11	25 78200 9 73	16.9 NA 9.5	7.7 NA 10.5	26 19400 <5 4070	24 19200 <5 3910	8.0 1.0 NA	43 14000 5 12100	45 13400 5 14300	29 9710 4 22	4.5 4.4 0.0 16.7	38.9 36.2 22.2	37	38 45	26 11200 3 12	2.7 NA NA NA	34.9 NA NA	17 13100 5 2510	19 13500 6 2620	11 10100 4 13	11.1 3.0 18.2 4.3	42.9 25.9 22.2 197.9
	maika	0.1	<0.1	1460 <0.1	<0.05	NA		<0.1	<0.1	0.10	NA	NA 47.1	<0.1	<0.1	NA	12100 <0.1	<0.1	0.12	NA	199.3 NA 16.7	<0.1 <2 16	<0.1 <2	0.10	NA	NA	e0.1	<0.1 - 13	13 0.05	NA	NA
Moh/bdenum Nickel Selenium Silver	mg/kg mg/kg mg/kg mg/kg	2 5 2	6	-	5	0.0	18.2	21	23	13	9.1	47.1	11	10	9.5			13	0.0	16.7	<5 <2	<2	13	NA 6.5 NA NA	20.7 NA NA	12	13	7	8.0	52.6
Tin Vanadium Zinc	mg/kg mg/kg mg/kg	5 5 5					13.3		31		13.8	84.2		17	· 11.1	- 8		a	· ·	· 11.8	<5 46 27	<5 42 23			NA NA 40.0		14			43.5
Zinc MAH Benzene Ethylbenzene	mg/kg mg/kg	0.2			:					-			<0.2	<0.2	NA NA	<0.2 <0.5	<0.2 <0.5		NA NA	NA NA	<0.2	<0.2	-	NA NA	NA		:	-		
Toluene Xylenes (m & p)	mg/kg mg/kg mg/kg	0.5 0.5 0.5											40.5 40.5 40.5	<0.5 <0.5	NA NA NA	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5		NA NA NA	NA NA	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5		NA NA NA	NA NA NA					
Xylene (o) Organochlorine Pesticides 4,4-DDE a-BHC	mg/kg mg/kg mg/kg		:	:	:		-		:				<0.05	<0.05	NA			-			<0.05	<0.05		NA	NA	<0.05 <0.05	<0.05 <0.05		NA NA	NA
a-BHC Aldrin b-BHC cis-Chlordane	mg/kg	0.05											<0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	NA NA NA	-		-			<0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	-	NA NA NA	NA NA NA	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05		NA NA NA	NA NA NA
trans-Chlordane d-BHC DDD	mg/kg mg/kg mg/kg	0.05 0.05 0.05		-	-									<0.05 <0.05 <0.05		-		-			<0.05 <0.05 <0.05		-		NA NA NA	<0.05 <0.05 <0.05	< 0.05		NA NA NA	NA NA NA
DDT Dieldrin Endosultan I	mg/kg	0.2											<0.05	<0.05	NA NA	-		-			<0.2	<0.2 <0.05		NA NA	NA NA	<0.2 <0.05	<0.2 <0.05		NA NA	NA NA NA
Endosulfan II Endosulfan sulphate Endrin	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05		-	-	-				-			<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NA NA NA	-		-	-	-	<0.05 <0.05 <0.05	<0.05 <0.05	-	NA NA NA	NA NA NA	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	-	NA NA NA	NA NA NA
Endrin aldehyde Endrin ketone	mg/kg mg/kg	0.05					-						<0.05	<0.05	NA.	-		-		-	<0.05	<0.05		NA NA	NA	<0.05	<0.05		NA.	NA NA
g-BHC Heptachlor Heptachlor epoxide Methoxychlor	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.2					-		-				<0.05 <0.05 <0.2	<0.05 <0.05 <0.05 <0.2	NA NA NA	-			-		<0.05 <0.05 <0.2	<0.05 <0.05 <0.05 <0.2		NA NA NA	NA	<0.05 <0.05 <0.05 <0.2	<0.05 <0.05 <0.05 <0.2		NA NA NA	NA NA NA
Azinophosphorous Pesticides Azinophos-methyl Carbophenothion	mg/kg	0.05												<0.05 <0.05 <0.05								40.05 40.05 40.05		NA NA NA					NA NA	NA
Chlorfenvinphos Chlorpyriphos	mgikg mgikg mgikg	0.05					-								NA			-						NA NA NA			<0.05		NA NA NA	NA NA NA
Chlorpyriphos-methyl Diazinon Dichlorvos	mgikg mgikg mgikg	0.05 0.05 0.05 0.05											<0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	NA	-					<0.05 <0.05 <0.05	<0.05 <0.05		NA NA NA	NA NA NA	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05		NA NA	NA NA
Dimethoate Ethion Fenamiphos	mg/kg mg/kg mg/kg	0.05		-						-			<0.05	<0.05	NA	-		-	-		<0.05	<0.05 <0.05 <0.05		NA NA	NA	<0.05	<0.05 <0.05 <0.05	•	NA NA NA	NA NA NA
Fenamiphos Fenthion Malathion Parathion-methyl	mg/kg mg/kg	0.05 0.05 0.2						-	-		-			<0.2				-		-	<0.05 <0.05 <0.2	<0.2	-	NA NA NA	NA	<0.05 <0.05 <0.2	< 0.2		NA NA NA	NA NA
Parathion Pirimphos-ethyl	mg/kg mg/kg mg/kg	0.2 0.2 0.05							-	-		-	<0.2 <0.05	<0.05	NA NA	-		-	-		<0.2	<0.2 <0.2 <0.05		NA NA NA	NA NA	<0.2 <0.05	<0.2 <0.2 <0.05	•	NA NA NA	NA NA NA
Protnicros PAH 2-Chinconanhthalene	mg/kg mg/kg	0.05											<0.05	<0.05	NA .						<0.05	<0.5		NA	NA	<0.05	<0.05		NA .	NA .
2-Methylnaphthalene 3-Methylcholanthrene 7,12-Dimethylbenz(a)anthracene	mgikg mgikg mgikg mgikg	0.5 0.5 0.5																-	NA		<0.5 <0.5 <0.5	<0.5		NA NA NA	NA NA NA			•		
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	mg/kg mg/kg mg/kg mg/kg	0.5											40.5 40.5 40.5 40.5	<0.5 <0.5 <0.5	NA NA NA	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5		NA		<0.5 <0.5 <0.5 <0.5	<0.5	-	NA NA NA						
Benzo(a)pyrene Benzo(b)&(k)fluoranthene	mg/kg mg/kg	0.5							-	-			<0.5	<0.5 <0.5	NA	<0.5	<0.5 <0.5	-	NA NA NA	NA	<0.5 <0.5 <1	<0.5 <0.5 <1	-	NA NA NA	NA		-			-
Benzo(b)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluorantherx	mg/kg mg/kg mg/kg	0.5										-	<0.5 <0.5	<0.5 <0.5 <0.5 <0.5	NA NA NA	<0.5 <0.5 <0.5	<0.5 <0.5	-	NA NA	NA	<0.5		-	NA ·	NA ·					
Unrysene	mg/kg	0.5 0.5 0.5							-			-					<0.5	-	NA NA NA	NA.	<0.5 <0.5 <0.5		-	NA NA NA			-	-		
Fluoranthene Fluoranthene Indeno(1,2,3-c,d)pyrene Naphthalene	mg/kg mg/kg mg/kg mg/kg	0.5	-	-				-	-	-			40.5 40.5 40.5	<0.5 <0.5 <0.5 <0.5	NA NA NA	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5		NA NA	NA NA	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	-	NA NA NA	NA NA NA			-		-
Phenanthrene Pyrene Pesticides-Others Demeton-s-methyl	mg/kg mg/kg		1			1							<0.5	<0.5	NA NA		<0.5 <0.5		NA NA	NA NA	<0.5	<0.5		NA	NA	÷				
Phenolics 2.4-Dimethylohenol	mg/kg mg/kg	0.05											<0.05	<0.05	NA ·						<0.05	<0.05		NA NA	NA	<0.05	<0.05		NA .	- NA
2-Methylphenol 2-Nitrophenol 3- & 4- Methylphenol 4-Chico-3-methylphenol Phenol	mg/kg mg/kg mg/kg	0.5 0.5 0.5																	-		<0.5 <0.5 <0.5	<0.5 <0.5 <0.5		NA NA NA	NA NA NA			-		
4-Chloro-3-methylphenol Phenol Physical	mg/kg mg/kg	0.5				-	-				-		-		-						<0.5 <0.5	<0.5		NA	NA					-
Physical Electrolytic Conductivity Moisture pH (Lab)	uS/cm % pH_Units	1 1 0.1	679 4.7 8.1	641 5 8.1	3	5.8 6.2 0.0	NA 44.2 NA	300 8.2 8.3	227 10.9 8.3	7	27.7 28.3 0.0	NA 15.8 NA	3.1 9	3.5 9.1	12.1 1.1	408 8.8 9.2	405 8.9 9.3	6	0.7 1.1 1.1	NA 37.8 NA	204 5 9.3	200 5.4 9.3	4	2.0 7.7 0.0	NA 22.2 NA	131 3.8 8.3	147 4.9 8.1	3	11.5 25.3 2.4	NA 23.5 NA
Polychonnated Biphenyls PCB (Sum of total) SVOCs	mg/kg		·																		<0.1	<0.1		NA	NA					
2-(Acetylamino) fluorene Hexachlorocyclopentadiene Total Petroleum Hydrocarbons	mg/kg mg/kg	2.5	1		-		-			1			- :	:				-			<0.5 <2.5	<2.5	:	NA NA			-			
TPH C 6 - C 9 Fraction TPH C10 - C14 Fraction TPH C15 - C28 Fraction	mg/kg mg/kg mg/kg	100		-	-		-		-	-			<10 <50 <100	<10 <50 <100	NA NA NA	<10 <50 <100	<10 <50 <100		NA NA NA	NA NA NA	<10 <50 <100	<100	-	NA NA NA	NA NA NA			-		
TPH C29-C36 Fraction Volatile Organic Compounds 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	mg/kg mg/kg	0.5											<100	<100	NA	<100	<100	-	NA	NA .	<100 <0.5 <0.5	<100		NA	NA					
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	mg/kg mg/kg	0.5							-												< 0.5	<0.5 <0.5 <0.5 <0.5		NA NA NA NA	NA NA NA		-			
1,1-Dichlorcethane 1,1-Dichlorcethene 1,1-Dichloropropene 1,2,3-Trichloropropane	mg/kg mg/kg mg/kg	0.5 0.5 0.5														-					<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5		NA NA NA	NA NA NA					
	mg/kg mg/kg mg/kg	0.5																-												
1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane	mg/kg mg/kg	0.5						-		-						-		-			<0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	-	NA NA NA	NA NA NA					
2,2-Dichloropropane Bromodichloromethane Bromoform Bromomethane	mg/kg mg/kg mg/kg	0.5 0.5																-			<0.5	<0.5		NA NA NA NA	NA					
Carbon tetrachloride Chlorodibromomethane	mg/kg mg/kg mg/kg	0.5			-	-										-		-		-	<0.5 <5 <0.5 <0.5	<0.5		NA NA	NA NA					
Chloroethane Chloroform	mg/kg mg/kg mg/kg	5 0.5 5										-		-		-		-			<5 <0.5	<5 <0.5	-	NA NA	NA NA				-	
cis-1,2-Dichloroethene	mg/kg mg/kg mg/kg	0.5							-					-		-		-			<0.5 <0.5 <0.5		-				-			
ois-1,4-Dichloro-2-butene Dibromomethane Dichlorodifluoromethane Hexachlorobutadiene	mg/kg mg/kg mg/kg	0.5 5 0.5														-		-			<0.5 <0.5 <5 <0.5	<0.5 <0.5 <5 <0.5		NA NA NA NA	NA NA NA					
Hexachlorobutadiene Hexachlorobutadiene Hexachloroethane	mgikg mgikg mgikg	0.5											-			-		-			<0.5 <0.5 <0.5	<0.5		NA NA NA		L÷.				
Pentachloroethane Trichloroethylene Tetrachloroethene	mg/kg mg/kg	0.5														-		-			<0.5 <0.5 <0.5	<0.5 <0.5 <0.5		NA NA NA	NA NA					
trans-1,2-dichloroethene trans-1,3-dichloropropene trans-1,4-Dichloro-2-butene	mg/kg mg/kg mg/kg mg/kg	0.5														•		-			<0.5 <0.5 <0.5	<0.5 <0.5 <0.5		NA NA	NA NA NA					
Trichlorofluoromethane	mg/kg mg/kg	5											-			-					<0.5 <5 <5	6		NA NA	NA					
Vinyi chionde Other Cyanide (total) Fluoride	mg/kg mg/kg	1 40	1 :		- :				-	1		-				-		-	-	-	<1 370	<1 420		NA 12.7	NA NA				-	-
RPDs have only been considered why																														

APPENDIX H.3 Job No. 087661006 - Soil Chemistry Results (Inorganics) Centrex Metals - Sheep Hill Marine Port Facility

PPTPs have only been considered where a concentration is greater than 5 times the EQL. "High RPDs are in boid (Acceptable RPDs treach EQL multiplier range are: 50 (1-10 x ECL); 50 (1-30 x ECL); 50 (-130 x ECL);

SHEEP HILL MARINE PORT FACILITY BASELINE STUDY

APPENDIX I Limitations

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

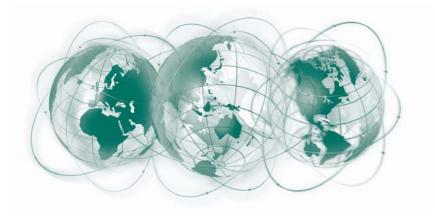
This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were not detected given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between assessment locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time the information is collected. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments, designs, and advice provided in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.


Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document. At Golder Associates we strive to be the most respected global group of companies specialising in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organisational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

Africa	+ 27 11 254 4800
Asia	+ 852 2562 3658
Australasia	+ 61 3 8862 3500
Europe	+ 356 21 42 30 20
North America	+ 1 800 275 3281
South America	+ 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Pty Ltd 199 Franklin Street Adelaide South Australia 5000 Australia T: +61 8 8213 2100

