Central Eyre Iron Project Environmental Impact Statement

APPENDIX V Kielpa Groundwater Supply Study

COPYRIGHT

Copyright © Iron Road Limited, 2015

All rights reserved

This document and any related documentation is protected by copyright owned by Iron Road Limited. The content of this document and any related documentation may only be copied and distributed for the purposes of section 46B of the *Development Act, 1993 (*SA) and otherwise with the prior written consent of Iron Road Limited.

DISCLAIMER

Iron Road Limited has taken all reasonable steps to review the information contained in this document and to ensure its accuracy as at the date of submission. Note that:

- (a) in writing this document, Iron Road Limited has relied on information provided by specialist consultants, government agencies, and other third parties. Iron Road Limited has reviewed all information to the best of its ability but does not take responsibility for the accuracy or completeness; and
- (b) this document has been prepared for information purposes only and, to the full extent permitted by law, Iron Road Limited, in respect of all persons other than the relevant government departments, makes no representation and gives no warranty or undertaking, express or implied, in respect to the information contained herein, and does not accept responsibility and is not liable for any loss or liability whatsoever arising as a result of any person acting or refraining from acting on any information contained within it.

CENTRAL EYRE IRON PROJECT DEFINITIVE FEASIBILITY STUDY REPORT

KIELPA GROUNDWATER SUPPLY STUDY

E-F-66-RPT-2001

Revision	Issue Date	Revision Description	Document Author	Checked By	Approved By
А	27/03/2014	A- Submitted for Client Review	Ben Jeuken	Don Armstrong	
0	29/04/2014	Final	Ben Jeuken	Don Armstrong	Steve F Green

Contents

Execut	ive Sum	mary		4						
1	Introdu	ction		6						
	1.1	Background								
	1.2	Purpose6								
	1.3	Scope of	Work	6						
2	Hydrog	eological	Review	7						
	2.1	1 Overview								
	2.2	Data Sou	rces	8						
	2.3	Hydroged	ological Structure	11						
		2.3.1	Tertiary Basin Fill	11						
		2.3.2	Basement	11						
		2.3.3	Groundwater	12						
3	Field In	vestigatio	n Work Program and Results	21						
	3.1	Overview	′	21						
	3.2	Approvals, Clearances and Permits								
	3.3	Field Sup	ervision and Data Collection	24						
	3.4	struction	24							
	tion and Production Bores	24								
	3.6	3.6 Bore Development Groundwater Yield and Conductivity								
	3.7	Groundw	ater Levels	28						
	3.8	Pumping	Tests	28						
		3.8.1	Overview	28						
		3.8.2	Bore Performance and Constant Rate Tests	29						
4	Modell	ing		31						
	4.1	Introduct	ion	31						
		4.1.1	Intended Use	31						
		4.1.2	Objectives	31						
		4.1.3	Scale	31						
		4.1.4	Model Confidence Level Classification	31						
	4.2	Conceptu	alisation	31						
		4.2.1	Aquifer Properties	33						
		4.2.2	Conceptual Boundaries, stresses and physical processes	34						
	4.3	Model Se	tup	35						
	4.4	Model Re	esults	35						
	4.5	Model Qu	uality Checks	36						
	4.6	Productio	on Borefield Capacity	38						

5	Borefield Design						
	5.1	General Arrangement	39				
	5.2	Value Improvement Options	39				
6	Limitat	ions	41				
7	Acrony	ms and Abbreviations	42				
8	Referer	nces	43				
9	List of A	Appendices	44				
Append	A xib	Well Permits	45				
Append	lix B	Drilling Summaries	47				
Append	dix C	Downhole Gamma Logs	48				
Append	dix D	Sieve Analysis	49				
Append	dix E	Pumping Test Data	50				
Append	dix F	Water Quality Data	51				
Append	dix G	Drawdown Time Series	52				
Append	dix H	Theis Worksheets	53				

List of Figures

Figure 2-1: Polda Trough and Borefield target area	7
Figure 2-2: Geological data review; source Data, net sand thickness, and cross section lines	9
Figure 2-3: Groundwater level and Salinity data	10
Figure 2-5: Cross Sections	20
Figure 3-1: Locality Plan	23
Figure 4-1: Hydrogeological Model Conceptualisation (North – South Section)	32
Figure 4-2: Modelled drawdown time series	36
Figure 4-3: Groundwater flow model set-up and results	37
Figure 5-1: Borefield Layout	40

List of Tables

Table 2-1: Source Data for Geological Model	8
Table 3-1: Description of drill rig and pumping test equipment	22
Table 3-2: Kielpa Water Supply Bore Details	26
Table 3-3: Kielpa Water Supply Bore Construction Details	27
Table 3-4: Water Quality Field Measurements	28
Table 3-5: Pumping Test Analysis	30
Table 4-1: Numerical Model Conceptualisation	32
Table 4-2: Lower Tertiary Formation aquifer testing results	33
Table 4-3: Numerical Groundwater Flow Model Setup	35
Table 4-4: Numerical Groundwater Flow Model Quality Checks	36
Table 4-5: Production bore drawdown calculation	

Executive Summary

Overview

A groundwater supply with sufficient capacity to meet Iron Road Limited's (IRD) Central Eyre Iron Project (CEIP) 15 GL/year water demand has been identified approximately 60 km south of the mine site, along the project utilities corridor. The target aquifer comprises thickened Tertiary sands from approximately 100 to 300m depth hosted in a graben structure labelled the Polda Trough.

It is important to differentiate between the "Polda Trough" and the "Polda Lens" which are separate and distinct geological units.

The Polda Trough is a intracratonic graben (fault bounded trough structure) which extends approximately 400km east- west from beneath the Great Australian Bight, to the Central Eyre Peninsula. The trough is infilled with up to 1200 m thickness of Neoproterozoic to Jurassic aged sediments. Tertiary cover also thickens across the structure. Groundwater contained within the trough is saline.

The Polda Lens is a thin (approximately 5 – 15m thick) layer of Quaternary limestone which lays on top of Tertiary clay and is exposed or covered with a thin veneer of soil. The lens extends some 7 km westeast and 9km north-south and is located 30 km west of Lock township. It holds fresh groundwater which is perched on top of the underlying clay. Recharge is by infiltration of rainfall into the highly porous limestone at surface. The Polda Lens is used to supply potable water.

The scope of the current study comprised geological review of existing data, groundwater investigation comprising construction and testing of bores at three sites, and use of the data to construct a three dimensional groundwater flow model. The flow model was used to validate a borefield design comprising 10 production bores located 2000m apart and each pumping 4000 m³/day. Water level drawdown impacts were simulated using the model.

Geological Review

Geological review comprised analysis of 194 historic uranium, coal and stratigraphic exploration holes for a total of 20,800 m drilling. Drillhole lithological logs and geophysical logs were reviewed to develop a database of lithology with depth. The extent and thickness of the target Tertiary aquifer was defined. The saturated thickness generally exceeds 100m and in the deepest parts of the through exceeds 160m. The total extent of Tertiary sediments hosted in the Polda Trough is approximately 1050 km²

Groundwater is saline, salinity ranges from 25,000 to 41,300 mg/l, and the potentiometric surface indicates an east-west gradient of 0.0003 from 84 mAHD at the planned borefield to 74 mAHD at Lock Township some 32km to the west.

Field Investigations

Investigation drilling comprised installation and test pumping of bores at three sites to depths ranging from 234 to 302m. Bore yields were constrained by pump capacity. Transmissivity estimates were 120m²/day at two sites and 1100-2700 m2/day with lower transmissivity boundary conditions at the third site. A test production bore at the third site yielded 50 L/s for 12m drawdown indicating a very high potential yield.

Groundwater Flow Modelling

A groundwater flow model was constructed using data from the geological review and field investigations. The Model is developed as a Class 1 confidence level model as defined by the Australian Groundwater Modelling Guidelines (Barnett et al 2012). The level is defined as suitable for predicting long-term impacts of proposed developments in low-value aquifers. The model objectives were to

- 1. Calculate drawdown at each production well at the completion of 20 years abstraction to validate borefield desgin.
- 2. Calculate drawdown with distance from the borefield at the completion of 20 years abstraction.

Drawdown at each pumped bore was exported from the model. Well losses and near-well drawdown were calculated using analytical equations. Calculated drawdown at each production bore is summarised in Table E1.

The outcome of the modelling work is that sufficient drawdown is available at each site to support the planed pumping rate.

Production Bore Site	SWL (m depth)	Pump Setting (m depth)	Available Drawdown (m)	Transmissivity ⁽⁴⁾ (m²/day)	Flow Rate (m ³ /day)	Near well drawdown ⁽²⁾ (m)	Well Loss (1) (m)	Numerical Model Drawdown ⁽³⁾ (m)	Total Drawdown ⁽⁵⁾ (m)
KPB01	50.0	140	90	450	4000	9.8	12	48	70
IC4 / KPB02	50.0	140	90	450	4000	9.8	12	60	82
KPB03	39.8	140	100	1000	4000	3.9	12	67	83
KPB04	39.8	140	100	1000	4000	3.9	12	71	87
KPB05	39.8	140	100	1000	4000	3.9	12	72	88
KPB06	34.4	160	125	130	4000	33.8	12	70	115
KPB07	34.4	160	125	130	4000	33.8	12	67	113
KPB08	34.4	160	125	130	4000	33.8	12	66	112
KPB09	26.8	150	123	120	4000	36.8	12	62	110
KPB10	26.8	150	123	120	4000	36.8	10	60	107

Table E1: Calculated drawdown at the completion of 20 years pumping

Notes (1) Well Losses based on KPBp04 pumping test.

(2) Drawdown from 0.1 to 100m radius calculated using Theis equation.

(3) Numerical Model used to calculate well interference and aquifer boundary effects.

(4) Transmissivity estimate from nearest investigation bore site.

(5) Sum of numerical model drawdown, near-well drawdown, and well losses.

The radius of drawdown impact is 7.5 km from the borefield to the calculated 2m drawdown contour.

Borefield Design

The borefield design comprises 10 bores each with the capacity to yield 180 m³/hr. The target aquifer interval is approximately 150 to 300m depth. Each bore will be drilled to approximately 300 m depth and cased with 300mm DN Class 12 PVC casing to 150m, the underlying aquifer from 150m to 300m will be screened with 200mm DN 316 grade stainless steel wire wound screens. Bores will be equipped with electric submersible pumps with the capacity to deliver 180 m³/hour – nominally 150 – 200 kW pumps. Detailed pump specification for each bore is dependent on individual bore efficiency and will be determined following bore construction.

Bore heads comprise a concrete pad, 316 grade stainless steel bore head-works, pump control panel, and flanged connection to the collector pipeline.

1 Introduction

1.1 Background

The Central Eyre Iron Project (CEIP) is located to the east of Warramboo. The project comprises an open pit mine, processing plant, camp, infrastructure corridor, and port facility. The area is arid. No significant surface water supplies exist in proximity to the project. The local reticulated water supply is constrained by the capacity of infrastructure.

The planned long-term water supply for the project will be groundwater pumped from the Kielpa borefield, approximately 60 km south of the mine and delivered to site via a pipeline. Potable water will be generated via reverse osmosis of the groundwater supply.

1.2 Purpose

The purpose of this work program is to

- Confirm the availability of groundwater to meet the project water demand.
- Provide an estimate of the drawdown impacts of groundwater extraction

The proposed bore field will abstract saline groundwater from the Tertiary aquifer identified between 100 and 300m beneath ground surface.

1.3 Scope of Work

The scope of work comprised

- Geological review of the target aquifer
- Field investigation comprising bore installation and testing at three sites
- Groundwater flow modelling
- Borefield design

2 Hydrogeological Review

2.1 Overview

The Kielpa groundwater supply borefield targets an aquifer comprised of thickened Tertiary sediments across the Polda Trough structural depression. The Polda Trough is a west – east tending structural depression faulted at the northern boundary and extending west from Kielpa to beneath the Great Australian Bight (Figure 2-1). The trough is infilled with Neoproterozoic, Paleozoic, and Jurassic sediments to a maximum intersected thickness of approximately 1200m. The western Eyre Peninsula is draped with Tertiary Sediments; the lower part of the Tertiary sediment, the Poelpena Formation is typically sandy. These sediments thicken across the northern, fault bounded part of the Trough, and the thick sandy facies form the target aquifer for the Kielpa groundwater supply.

Figure 2-1: Polda Trough and Borefield target area

2.2 Data Sources

A geological model of the Tertiary aquifer has been developed through interrogation of existing exploration reports and other geological data. These data sets are summarised in Table 2-1. Data sets were interrogated to develop a database of lithology for each drillhole. For each historic drillhole, intervals were logged as:

- Sand- Aquifer
- Silt- Aquitard
- Clay Confining Layer
- Lignite Confining layer
- Basement Low transmissivity aquifer
- Saprolite (weathered basement) confining layer.

Tahle	2-1.	Source	Data	for	Geo	Ingical	Model
lane	Z-T.	Jource	ναια	101	Geo	iugicai	would

Data Source	Description
Water Connect Database	Database of all permitted water bores in the state. Includes stratigraphic, water level and water quality data. https://www.waterconnect.sa.gov.au/Systems/GD/Pages/default
SARIG Database	Database of all exploration drillholes in South Australian. Includes reference to open file exploration reports. https://sarig.pir.sa.gov.au
ENV02256	Chevron Exploration Corp 1974. Open File Exploration Report. LDH Series Drilling
ENV03973	CRA Exploration 1985. Open File Exploration Report 80LRM and 81LRM series drilling.
ENV01108	KerMcgee Austrlia 1969. Open File Exploration Report 80LRM and 81LRM series drilling. R and V series Drilling
ENV5019	Pan Continental Mining Ltd 1993. Open File Exploration Report 32 Series Drilling
ENV1238	Mines Administration Pty Ltd – Teton Australia Joint Venture 1972. Open File Exploration report DP Series Drilling
SADME RB81/00019	South Australian Department of Mines and Energy 1981. Stratigraphic Hole "Tuckey 1" Well completion report. Report Book 81/00019

Drillholes included in the database are presented as Figure 2-2.

Groundwater level and salinity data in the area is sparse because high salinity precludes use for agriculture hence very few bores have been drilled. Data within the Polda Trough Tertiary sediments is limited to IRD's water investigation bores and hydrogeological studies into the Lock Coal deposit (Eberhard and Waterhouse, 19791).

Figure 2.3 Groundwater Level and Salinity Data

2.3 Hydrogeological Structure

2.3.1 Tertiary Basin Fill

The hydrogeological structure was ascertained by developing a series of cross sections across the trough. Cross section locations are shown on Figure 2-2. Cross Sections are presented as Figure 2-4.

To the west of the trough, represented by Sections 1 and 2, the lithology logged below the water table is predominately fine grained silts and clays, and the north-south extent is approximately 6km. The transmissivity through this section is expected to be relatively low.

Section 3 further east shows that the lithology of Tertiary Sediments below the water table changes to a predominately sandy facies, with in excess of 100m of sand logged in drillholes. None of the drillholes fully penetrate the Tertiary aquifer thickness in this section.

Section 4 defines the northern margin of the deepest part of the Trough. Basement is intersected at drillhole 80LRM8 at approximately 20 mAHD (85m drilled depth). Further south predominately sandy facies are logged beneath the water table, with a maximum thickness of 123m logged at drillhole 81LRM61. None of the drillholes on this section fully penetrate the thickened Poelpena Formation aquifer.

Section 5 again defines the northern margin of the deepest part of the Trough. Basement is intersected at drillhole 80LRM5c at approximately 0 mAHD (85m drilled depth). Further south the full thickness of the Poelpena aquifer is intersected at drillhole Kilroo 1A, which reports 130m thickness of sand from -5 to -135 mAHD. Further south drillholes do not fully penetrate the Poelpena Formation aquifer. Net sand thickness beneath the water table is approximately 100 m in each of the drillholes.

Section 6 presents the eastern part of the trough. Net sand thickness beneath the water table ranges between 80 and 100m, however none of the drillholes fully penetrate the aquifer. Fine grained lithology is reported for two drillholes 80LRM3 and LDH 21, indicative of reduced transmissivity in this area.

Section 7 presents a west-east section though the northern part of the trough. Net saturated sand thickness ranges from 80 to 160m. Only drillhole Kilroo1a and the adjacent 81LRM64 fully penetrate the Poelpena Formation aquifer.

Section 8 presents a west-east section though the southern part of the trough. Drillholes west of chainage 20,000m exhibit predominately fine grained lithology and are net sand thickness below the water table at these holes is generally less than 20m. To the east drillholes consistently penetrate in excess of 100m saturated sands. Stratigraphic drillhole Tuckey 1 is notable that it was cored, providing detailed lithological data. It reports 162m meters of saturated sand, predominately logged as medium to coarse grained indicative of moderate to high transmissivity.

2.3.2 Basement

The inferred geology of basement rock surrounding the Polda Trough is presented in Figure 2-2. To the north and west of the basin, basement rock comprises the gneiss and granite of the Sleaford complete. Aquifer testing of this formation by IRD to support mine dewatering studies and construction water supply indicate a regional transmissivity of approximately $2 - 4 \text{ m}^2/\text{day}$ (SKM 2013, Groundwater Science 2013).

Basement to the east comprises the Blue ranges beds, described as a consolidated sandstone, and gritty conglomeritic sandstone. A single aquifer test in this unit (Groundwater Science 2013) yielded a transmissivity estimate of 16 m²/day.

To the south the trough is bounded by schist and gneiss of the Hutchinson group. Aquifer tests into the Wilgerup ore body yielded high transmissivity estimates of 90 m2/day. However the study authors proposed that these values were due to localised fracturing, and that the regional transmissivity was likely to be lower; drawdown estimates for the mine were calculated using a transmissivity estimate of $10 \text{ m}^2/\text{day}$ (SKM 2008).

2.3.3 Groundwater

Salinity ranges from 25,000 mg/L to 41,300 mg/L in the area of the proposed borefield, and ranges from 35,000 to 45,000 mg/L at the Lock Coalfield (Eberhard and Waterhouse, 1981). Groundwater level and salinity data is presented as Figure 2-3. A very low hydraulic gradient is measured across the Polda Trough East of the Lock Coal field, indicative of very high transmissivity. A relatively high gradient is reported across the coal deposit. This trend indicates that the aquifer is markedly less transmissive in the area around the coal field and Lock township, and that this area acts as a hydraulic restriction effectively supporting elevated water levels in the eastern part of the basin.

Contained Groundwater resource

The total volume of groundwater contained within the Tertiary aquifer can be calculated as the product of the bulk volume of the aquifer and the porosity. Bulk volume is the product of the area and the average saturated thickness. The area is defined by DMITRE data set showing the extent of the Polda Trough structure east of Lock (Figure 4-3). The average thickness can be assigned a conservative value of 100m on the basis of geological Sections presented in Section 2. Typical porosity of sediment is approximately 0.3 (Fetter, 1994).

1050,000,000 m² area x 100 m thickness x 0.3 porosity = 3×10^{10} m³ contained groundwater.

The total project water requirement is 3×10^8 over 20 years, or 1% of the contained volume.

Estimated natural through flow

The volume of groundwater that moves through the aquifer annually can be estimated from the transmissivity of the aquifer, and measured hydraulic gradient as follows:

Q = T x G x W

Where

Q = Flow rate (m3/day)

T = Transmissivity (m3/day/m)

G = Hydraulic gradient (m/m)

L = Width of Section

The Tertiary aquifer in the Polda Trough exhibits a transmissivity of approximately 120 m²/day (Section 3.8), measured hydraulic gradient across the planned borefield is 0.0003 and the width of the radius of pumping impact is approximately 15,000m (Section 4.4) which equates to an estimated daily through-flow of 500 m³/day.

Planned borefield pumping is approximately 43,000 m³/day. The through-flow estimate is approximate, however it is clear that the borefield will be "mining" the stored water resource over the duration of operation, and complete water level recovery following closure will occur slowly.

Figure 2-4: Cross Sections

3 Field Investigation Work Program and Results

3.1 Overview

The scope of work involved on-ground identification of drilling locations and supervision of drilling, testing and bore installation. Specifically;

- Site pegging and clearance
- Contractor engagement
- Drilling, design and installation of 3 x 125mm PVC cased investigation bores
- Drilling, design and installation of 1 x 250mm PVC/Stainless Steel cased test production bore
- The logging of drill cuttings, yield and salinity of produced groundwater
- Downhole gamma survey logs of completed bores
- Gauging of water levels, and
- Undertaking pumping tests and data analysis on all bores.

Drilling works were undertaken by Thompson Drilling Pty Ltd under the supervision of Groundwater Science Pty Ltd (GWS). Table 3-1 outlines the details of drilling rig and support equipment used. Drilling and testing of bores commenced in February 2014 and concluded in early March 2014.

A total of four bores were drilled with mud rotary techniques, comprising three investigations and one production bore to assess the hydrogeological conditions west of Kielpa (See Figure 3-1). Bore depth designs were based on drilling information obtained during the recent drilling program (GWS 2013 - Corridor Groundwater Supply Investigations), historical drilling logs from within the surrounding area and gamma logs following completion of drilling. Details of gamma logs are provided as Appendix C.

Pumping tests at all bores were undertaken by Department of Environment, Water and Natural Resources (DEWNR) Resource Monitoring Unit. These works commenced on 4 March 2014 and were completed on 17 March 2014.

Upon completion of the work, each site will be rehabilitated by Fosters Earthmoving. The bore will remain as an approximately 1m high standpipe with lockable casing.

The nomenclature applied in the program is as follows:

KPBXX: Site ID

KPBiXX: Investigation bore (125mm cased bore)

KPBpXX: Test Production bore (250mm cased bore)

Table 3-1: Description of drill rig and pumping test equipment

DRILLING				
RIG 18				
Make and Model	RIG 18 - Bourne 1250 Drill Rig mounted on late model 8x8 truck			
Compressor specifications (for airlifting)	Sullair 425cfm air compressor			
Mud Pumps	5x6 Garden Denver *2			
Drilling method	Mud rotary			
PUMPING TEST				
Pumping test rig	Mitsubishi Pump Truck			
Make and model of submersible pump	Grundfos SP604			
Generator specifications	80 kVa			
Flow control specifications	Calibrated water flow meter (siemens mag 5000)			
Equipment for manually and automatically recording water levels	Downhole probes – Mines Dept , rugged troll 100 30 mts, 90FL microprocessor field analyser			

Figure 3.1 Kielpa Water Supply Investigation bore locations

3.2 Approvals, Clearances and Permits

The following approvals, clearances and permits were obtained prior to commencement of drilling;

- Well Permits obtained from DEWNR to comply with South Australian government regulations. (Appendix A)
- Dial Before Your Dig Surveys for location of general underground services (i.e. Telstra, electrical cables and water pipes).
- On-site Location of SA-Water Pipeline at KPB04 site by SA Water representative Andrew Grey.
- Local Council approvals from District Councils of Cleve to undertake water investigations within public road reserves.

3.3 Field Supervision and Data Collection

GWS hydrogeologists supervised the drilling, completion and pumping tests of all bores. In addition, the GWS hydrogeologist acted as Iron Road's HSEC representative on the drill site.

Data collected during the field investigations included:

- Lithology based on drill cutting sampled over 2 m intervals.
- Collection of chip trays (2m intervals) during drilling with supporting photo.
- Field water quality parameters including; airlift yield (L/s), temperature, electrical conductivity (EC as mS/cm) and pH measured during airlift following the completion of drilling.
- Recovered groundwater levels upon completion of drilling.
- Grain size sieve analysis with samples weighed wet and drained.
- Downhole gamma logs of all bores to assist with well construction.
- End of day photos of each drill site.
- Drill site fence maintenance.
- Daily Rig Inspection Form and Hydrogeological Drilling Site Supervision Sign-off Sheet.
- Daily diary, including rig active and inactive time, water carting, well construction details and rig maintenance and/or breakdown time.

3.4 Well Construction

All bores were constructed by a licensed driller in accordance with well permits obtained from DEWNR and Minimum Standards for Water Bore Construction in Australia (National Uniform Drillers Licensing Committee 2011). Table 3-2 presents the corresponding well permit reference for each drill site. Details of well permits are attached as Appendix A.

Upon completion of each bore, standpipes were fitted with 12" (test production bore) and 10" (investigation bores) lockable steel monuments.

3.5 Investigation and Production Bores

Three investigation bores and one production bore (KPBi04, KPBi07, KPBi09, KPBp04 - see Figure 3-1) were drilled to determine the prospective saline groundwater supplies within the thickened Tertiary sediments across the Polda Trough within the Kielpa Domain.

All investigation bores were completed with 125mm DN Class 12 PVC casing while the production bore was completed with 250mm DN Class 18 PVC reducing down to 150mm DN Class 18 PVC and stainless

steel wire wound screens. All screens were 0.5mm aperture. Screens were naturally packed. A cement/grout seal to surface was installed, typically above a cement boot.

Table 3-2 provides a summary of bore location, drilling method and completion formation. Table 3-3 provides details on final construction. Detailed drilling summaries, including lithological logs, airlift yield and groundwater conductivity are presented in Appendix B. Grain size sieve analysis for KPB04 site is presented in Appendix D.

Table 3-2: Kielpa Water Supply Bore Details

	Well MGA 93 Zone 53*		one 53*	Surface	Total Drilled	Date	Date	Drill	
Bore ID	Permit Number	Easting	Northing	Elevation (mAHD)*	Depth (m bgl)	Start	Finish	Method	Target Aquifer
KPBi04	229768	601413	6284304	122	310	21/02/14	23/02/14	Mud Rotary	Tertiary (Poelpena Formation)
КРВр04	229769	601414	6284357	125	304	03/03/14	08/03/14	Mud Rotary	Tertiary (Poelpena Formation)
KPBi07	229772	597907	6283718	117	310	25/02/14	26/02/14	Mud Rotary	Tertiary (Poelpena Formation)
KPBi09	229774	594439	6282471	109	254	28/02/14	01/03/14	Mud Rotary	Tertiary (Poelpena Formation)

Notes: *GPS Coordinates taken with handheld GPS +/- 5m accuracy. Surface elevation from Geoscience Australia 3-second DEM.

Table 3-3: Kielpa Water Supply Bore Construction Details

Bore ID	Casing Material & Grade	Casing Diameter (mm)	Seal (m)	Cement Boot (m)	Gravel Fill (m)	Depth Setting (m)	Purpose
						0-184	Blank casing
						184 - 190	Screen, machine slotted, 0.5mm
						190 – 222	Blank casing
KPBi04	PVC / Class 12	125	0 - 125	125 - 128	138-290	222 – 228	Screen, 0.5mm
	1 007 01033 12	125	(Cement Grout)	125 120	(Natural pack)	228 – 282	Blank casing
						282 – 288	Screen, 0.5mm
						288 – 290	Sump (blank casing with end cap
						290 - 310	Collapsed hole
						0-144	PVC blank casing - first stage
						134.5-135	J-latch / cone packer
		250mm				135 - 182	PVC blank casing - riser
		(0 – 144m)				182 - 188	Screen, wire wound 0.5mm
	PVC Class 18 /	150mm	0 – 145 (Cement Grout)		145 - 302	188 - 202	PVC blank casing
KPBp04 Staiploss Stool	Stainless Steel	(134.5 – 284m)		-	(Natural Pack)	202 - 208	Screen, wire wound 0.5mm
	Stamess Steel	125mm			(Nataran ack)	208 - 248	PVC blank casing
		(284 – 302m)				248 - 254	Screen, wire wound 0.5mm
						254 - 278	PVC blank casing
						278 - 284	Screen, wire wound 0.5mm
						284 - 302	Sump (PVC)
						0 - 216	Blank casing
						216 - 222	Screen, 0.5mm
						222 - 248	Blank casing
	DVC / Class 12	125	0-108	100 110 114	114 – 288	248 - 254	Screen, 0.5mm
KP DIU7	PVC/Class 12	125	(Cement Grout)	100, 110, 114	(Natural Pack)	254 - 280	Blank casing
						280 - 286	Screen, 0.5mm
						286 - 288	Sump, blank casing with end cap
						288 - 310	Collapsed hole
						0 - 150	Blank casing
						150 - 156	Screen, 0.5mm
						156 - 186	Blank casing
KDD:00	DVC / Class 12	105	0-108	100	108 – 254	186 - 192	Screen, 0.5mm
KPBIU9	PVC/ CIdSS 12	125	(Cement Grout)	108	(Natural Pack)	192 - 224	Blank casing
						224 - 230	Screen, 0.5mm
						230 - 232	Sump, blank casing with end cap
						232 - 254	Collapsed hole

3.6 Bore Development Groundwater Yield and Conductivity

Table 3-4 provides a summary of field water quality parameters. Average airlift yields from investigation bores ranged from 3.7 to 13L/s. The lower yield encountered at KPBiO9 is likely the result of a higher clay content in the sand and incomplete bore development (Airlift pumping to remove fines and clean the well screen) due to limited water storage capacity at this site.

The average airlift yield from the production well at KPBp04 was 15 L/s.

Conductivity ranged from 41.6mS/cm at KPBiO4 in the east up to 62.2mS/cm at KPBiO7 (west).

3.7 Groundwater Levels

The depth to water recorded at each bore is presented in Table 3-4. Water levels range from approximately 39m in the east at KPBi04 to 27.38m in the west at KPBi09.

Bore ID	рН	Conductivity (mS/cm)	Temperature (°C)	Airlift Yield* (L/s)	Depth to Water (m)**	Date Measured
KPBi04	6.96	41.6	25.1	13	38.96	14/03/14
KPBi07	7.01	62.2	27.1	9.14	35.41	14/03/14
KPBi09	7.69	47.1	22.6	3.7	27.38	14/03/14
КРВр04	7.4	45.3	24.9	15	39.54	15/03/14

Table 3-4: Water Quality Field Measurements

Notes:

*Depth to Water - metres below top of steel casing

**Airlift yields are an average over the full airlift period (hours).

3.8 Pumping Tests

3.8.1 Overview

Pumping tests were undertaken by DEWNR Groundwater Resource Monitoring Unit from 4 March to 17 March 2014.

Testing at each bore included (where possible):

- A multi rate step test comprising 3 x 100 minute steps, and
- A constant rate test at the maximum achievable rate for a period of up to 8 hours. The actual duration of each test was constrained by turkey nest capacity.

During each test the water level in the pumped well was recorded and at observation wells. Groundwater samples were obtained from each bore and submitted for Laboratory analyses. Water quality data is presented as Appendix F.

Water was disposed of by discharge to a turkeys nest dam constructed at each site.

3.8.2 Bore Performance and Constant Rate Tests

The Cooper-Jacob straight line method was used to calculate Transmissivity from drawdown data, whilst recovery data was analysed using the Theis recovery method (Krusemann and De-ridder 1994).

The Clarke Groundwater software (Clarke 1982) was also used to calculate Transmissivity and boundary conditions from drawdown data at KPBi04 observation bores measured during pumping from KPBp04.

The results of each bore performance (step test) and constant rate test is summarised in Table 3-5 with detailed results and graphs presented in Appendix E.

KPBi07

A step test was not undertaken. A constant rate test was undertaken pumping at 5 L/s for 8 hours starting at 5/3/2014 9:40. Flow rate was constrained by the size of the pump that would fit inside the casing. Maximum drawdown was 11.89m. Estimated Transmissivity is 119 m²/day on the basis of drawdown and recovery data.

KPBi09

A constant rate test was attempted at on 6/3/2014 at 9:20 pumping at 5 L/s however the water level reached the pump inlet after 3 minutes pumping. The test was discontinued.

A step test was undertaken to determine a sustainable bore yield for the CRT. The step test commenced on 6/3/2014 at 11:00 am. The bore was pumped at 2, 3 and 4 L/s for 100 minute steps. Drawdown at the end of each step was 16, 28m respectively. The final 4L/s step could not be sustained and the water level reached the pump inlet.

A second constant rate test commenced on 7/3/2014 at 8:40 pumping at a rate of 3L/s for 8 hours. The drawdown data shows ongoing bore development (pumping of fines) during pumping and is not suitable for analysis. Recovery data is not impacted by bore development. Analysis of recovery data using the Theis recovery method yielded a transmissivity estimate of 119 m²/day.

KLBp04

Development

Production bore KPBp04 was developed by jetting and airlift with the drill rig at a rate of approximately 1m screen per hour. Subsequent development was undertaken by pumping with the submersible pump on the 12/3/2014. Maximum flow rate as 50 L/s. flow rate was constrained by the size of the pump.

Bore Efficiency Step Test

A step test was undertaken pumping at 20, 30 and 50L/s for 100 minute steps commencing on 13/3/2014 at 10:30 am. Maximum drawdown was 11.18m. Data was analysed using the Clarke Groundwater Suite of software. The calculated well equation is:

$$S = (0.0016 \text{ Q}) + (0.0002 \text{ Q Log}(t)) + (2.7 \times 10^{-7} \times \text{Q}^2).$$

Where

S = Drawdown in the pumped well (m)

Q = Flow rate (m³/day)

T = duration of pumping (days)

This equation does not allow for bore interference effects or boundary conditions in the aquifer. For a flow rate of 50 L/s instantaneous well losses total 12 m drawdown. Treatment of interference effects and boundary condition is described in Section 4.6.

Constant Rate Test

A constant rate test commenced on 14/3/2014 at 10:00. The planned test comprised pumping at 5 L/s for 3 days. Flow rate was constrained by the size of the turkeys nest dam available for water storage. The long duration, low rate test was planned in order to identify leakage trends and boundary conditions. However the5 L/s flow rate did not produce measureable drawdown trends. The test was aborted after 24 hours.

Following overnight recovery a second CRT commenced on 16/3/2014 at 8:30 am. The bore was pumped at 30 L/s for 6 hours until the dam was full. Maximum drawdown in the pumped well was 5.8m. Maximum drawdown in KPBi04 obs well located 50m to the south was 0.45m. The following analyses were undertaken:

- Drawdown data in the pumped and observation well was analysed using the Cooper-Jacob straight line method.
- Recovery data in the pumped and observation well was analysed using the Theis recovery method.
- Drawdown data at the observation bore was analysed by fitting a Theis type-curve to the data. The data conform to the type curve consistent with a transmissivity of 3124 m²/day and a storativity of 1.55 x 10⁻³. The rate of drawdown increases and deviates from the type-curve at 0.11 days indicative of a boundary condition at approximately 700 m distance from the pumped well.
- Drawdown and recovery data was analysed using the Clarke Groundwater software package. Calculated aquifer properties are summarised in Table 3-5.

Pumping tests indicate high transmissivity of 120m2/day at two sites, and very high transmissivity at the KPB04 site. However the KPI04 test indicates lower transmissivity boundary conditions within 700 m of the tested bore. A transmissivity estimate of 120 m2/day is considered typical for the Lower Tertiary aquifer in the deeper part of the trough, with localised higher values as exhibited at KPB04 site, and the higher value of 450 m2/day derived from testing of IC4 in 2013 (GWS 2013).

	Constant	Constant			Transmissivity (m²/day)					
Bore ID	Rate Test (L/s)	Test Duration (hours)	Drawdown (m)	Clarke	Jacob straight line method	Theis recovery method	Theis Type Curve	Average ⁽¹⁾		
KPBi07	5	7.5	11.89		105	132		120		
KPBi09	3	8 ⁽²⁾	.33		_(3)	119		120		
КРВр04	30	6	5.8	-	1129	1129	-	1100		
KPBi04			0.45	2929	2635	2156	3124	2700		
(Obs)	Sto	orativity (uni	tless)	1.8 x 10 ⁻³	2.1 x 10 ⁻³		1.5 x 10 ⁻³	1.8 x 10 ⁻³		

Table 5-5. Pullping Test Analysis	Table	3-5:	Pumping	Test	Analysis
-----------------------------------	-------	------	---------	------	----------

Notes:

(1) Average rounded to two significant figures.

(2) Test impacted by ongoing bore development during the test.

(3) Well not fully developed, data not suitable for analysis.

4 Modelling

4.1 Introduction

Numerical groundwater flow model construction was undertaken to provide a tool for assessing the long term yield and drawdown of a borefield constructed to develop the Kielpa Water Supply and yield the project water demand of 40,000 m³/day for 20 years.

The model was constructed using Visual Modflow interface for the MODFLOW code. Visual Modflow is an industry standard package for numerical modelling of ground water flow.

4.1.1 Intended Use

The intended use of the model is to

- 1. confirm the availability of groundwater to meet the project water requirement,
- 2. validate the conceptual borefield design, and
- 3. estimate the radius of drawdown impact from borefield operation.

4.1.2 Objectives

The objectives of the model are to:

- 1. Calculate drawdown at each production well at the completion of 20 years abstraction.
- 2. Calculate drawdown with distance from the borefield at the completion of 20 years abstraction.

4.1.3 Scale

The model scale is designed to simulate the Tertiary aquifer hosted within the eastern Polda Trough. The model scale is designed to meet the following objectives:

- 1. Sufficiently large extent to prevent spurious boundary effects
- 2. Sufficient grid resolution to allow prediction of drawdown at each well to a usable scale.

4.1.4 Model Confidence Level Classification

The Model is developed as a Class 1 confidence level model as defined by the Australian Groundwater Modelling Guidelines (Barnett et al 2012). The level is defined as suitable for predicting long-term impacts of proposed developments in low-value aquifers.

4.2 Conceptualisation

The geological and hydrogeological setting is described in detail in Section 2, whilst the outcomes of investigation bore drilling and testing are summarised in Section 3.

The aquifer has been conceptualised as a simplified 3 dimensional flow model. This approach has been adopted because:

- 1. The approach is consistent with the model objective which comprises prediction of drawdown with time in response to abstraction.
- 2. The approach is consistent with the available data. Most drillholes in the Polda Trough Tertiary aquifers do not fully penetrate the Tertiary aquifer. For this reason the thickness of the unit is not well understood beyond the area of investigation by IRD in 2014.

The simplified model is divided into the domains summarised in Table 4-1 and shown graphically as Figure 4-1.

Table 4-1: Numerical Model Conceptualisation

					Hydraulic Conductivity (m/day)		Storage		
Model Layer	Geological Formation	Description	Hydrostratigraphic Unit description	Thickness (m)	Horizontal	Vertical	Transmissivity (m²/day)	Specific Yield	Specific Storage
1	Quaternary	Partially saturated	Water table	50	0.1	0.01	2	0.05	-
2	Tertiary (upper)	Clay confining Layer	Confining Layer	50	0.01	0.001	0.5	0.05	1 x 10⁻⁵
		Ubiquitous sheet sands	Regionally extensive aquifer	20	0.5	0.05	10	-	1 x 10⁻⁵
3	Tertiary (Lower)	Polda Trough sheet sands	Moderately transmissive aquifer in trough	80	0.5	0.05	40	-	1 x 10⁻⁵
		Deep Polda Trough coarse sands	Highly transmissive aquifer in deepest part of trough	80	1	0.1	80	-	1 x 10⁻⁵
4,5,6	Blue Range Beds	Sandstone	Low transmissivity Basement aquifer	100-380	0.05	0.05	5-19	-	1 x 10⁻⁵
4,5,6	Sleaford Complex	Granite and Gneiss	Negligible transmissivity basement aquifer	100-380	0.01	0.01	1-3.8	-	1 x 10⁻⁵

Figure 4-1: Hydrogeological Model Conceptualisation (North – South Section)

4.2.1 Aquifer Properties

Aquifer properties for each hydrostratigraphic units are described below

Quaternary

Where saturated the Quaternary aquifer comprising aeolian sands and calcrete which will exhibit some transmissivity. A nominal hydraulic conductivity of 0.5m/day consistent with fine sand, has been applied. Initial head is simulated at -30m which results in 20m saturated thickness in this unit.

Specific yield or "drainable porosity" simulated in the model is 0.05.

Upper Tertiary Clay

The upper tertiary clay will serve as a confining layer. Lithology comprises plastic clay with some sand inter-beds. Laboratory tests of clay core samples from this unit yielded hydraulic conductivity estimates ranging from 1×10^{-4} to 4.4×10^{-6} m/day (Dowie and Love, 1996). The unit is not continuous over the study area (Refer Cross Sections presented in Section 2). The unit will serve as a local confining layer, however regionally the aquifer will perform as a leaky – unconfined aquifer. This has been simulated with a vertical hydraulic conductivity of 1×10^{-3} m/day.

Lower Tertiary Sands

The lower tertiary sands comprise fine to gravel grainsize, with interbeds of fine grained silt and clay material and lignite. Vertical hydraulic conductivity is lower than horizontal hydraulic conductivity. The results of aquifer testing of this geological unit are summarized in Table 4-2. Hydraulic conductivity estimates generally range around 0.5m/day. This study identified values of conductivity ranging from 0.5 to 11 m/day in the deeper parts of the trough. The unit has been simulated with a regional hydraulic conductivity of 0.5m/day, and a localised higher value of 1 m/day in the deeper part of the trough. This set-up yields a total transmissivity of 130 m²/day in the deepest parts of the trough, 50 m²/day in the sheet sands outside the deepest part of the trough and 10 m²/day regionally.

Specific Storage is simulated in the model at 1×10^{-5} m⁻¹, consistent with the results of the pumping tests at KPBp04. This value is typical for a confined sedimentary aquifer (Fetter 1994).

Test	Transmissivity (m²/day)	Aquifer thickness (m)	Hydraulic Conductivity (m/day)	Reference
IC4	450	104	4	GWS 2013
KPB_4i	1851	166	11	
KPB_7i	119	215	0.5	Current Study
КРВ_9і	119	204	0.5	
SKM2	30	10	3	
SKM8	4	10	0.4	SKM 2013
SKM9	32	10	3	
SKM10	4	7	0.6	
P45 Lock Coal Study	3-14	6	0.4 - 2	Coffey 1981

Table 4-2: Lower Tertiary Formation aguifer testing re	sults
--	-------

Basement

To the north and west of the basin, basement rock comprises the gneiss and granite of the Sleaford complete. Aquifer testing of this formation by IRD to support mine dewatering studies and construction water supply indicate a very low regional transmissivity of approximately $2 - 4 \text{ m}^2/\text{day}$ (SKM 2013, Groundwater Science 2013). Hydraulic conductivity of 0.01m/day was applied in the model.

Basement to the east comprises the Blue ranges beds, described as a consolidated sandstone, and gritty conglomeritic sandstone. A single aquifer test in this unit (Groundwater Science 2013) yielded a low transmissivity estimate of 16 m²/day. Hydraulic conductivity of 0.05m/day was applied in the model.

Basement outcrops and subcrops beneath thin cover to the east and south of the model domain. The extent of basement outcrop is defined by PIRSA's (now DMITRE) 2007 Tertiary Neogene Coverage GIS datasets. This has been simulated in the model by removal of the Tertiary and Quaternary layer properties, and the application of basement properties to all model layers. The extent of basement outcrop is presented on Figure 4-3.

The deeper Jurassic and older sedimentary fill in the Polda Trough is not simulated. The Jurassic and deeper units are not sufficiently well defined to allow modelling. While the material may contribute some confined storage to the borefield, the total contribution will be negligible compared to downward leakage of unconfined storage from the overlying material (Confined storage coefficients are typically 3 to 4 orders of magnitude smaller than vertical leakage from unconfined storage).

4.2.2 Conceptual Boundaries, stresses and physical processes

The conceptual boundaries of the aquifer comprise:

- Recharge via rainfall and through-flow from basement outcrop to the east outside the model domain
- Discharge via through-flow to the west.
- Eventual subsurface groundwater discharge to the ocean some 75km west of the model domain.

Stresses to the aquifer in its currently un-used state are limited to the recharge and discharge processes above.

The current model is set up to simulate drawdown only. As such recharge, through flow and discharge are not simulated and the only simulated stress is groundwater pumping via 10 production bores at $4,000 \text{ m}^3$ /day per bore. Pumping simply removes water from storage. This is a conservative approach with does not allow for aquifer recharge and through-flow.

Analytical estimates of aquifer through-flow are presented in Section 2.3.3. Estimated natural daily groundwater through-flow is $500 \text{ m}^3/\text{day}$; approximately 1% of the planned pumping rate. Hence the exclusion of these stresses is not expected to materially impact on model outcomes.

4.3 Model Setup

Model Setup is summarised in Table 4-3. Model extent and hydrogeological property zones are shown in Figure 4-3.

Parameter		Description
Grid size	Extent	65,000 x 65,000 x 380 (north x south x thickness)
	Cell size	100 m x 100m at borefield, enlarging outwards up to 1500 m x 1500m.
	Layers	See Table 4-1and Figure 4-1.
Boundaries	Constant Head	Outer edges applied head of - 30m
	Borefield	10 bores, screened across layers 3 and 4. Each extracting 4,000 m3/day for 20 years (Stress period 1).
Properties	Hydraulic conductivity	See Table 4-1
	Storage	Layer 1: Sy = 0.05 Layers 2-6: Ss = 1 x 10 ⁻⁵
Run Parameters	MODFLOW	 Transient, 2 stress periods: Day 0-7300 pumping Day 7,300 – 14,600 no pumping – recovery 10 time steps per stress period WHS Solver, 0.001m head change convergence criteria

Table 4-3: Numerical Groundwater Flow Model Setup

4.4 Model Results

Model Results comprise:

- Time series of drawdown calculated at the following points:
 - 1.Each production bore
 - 2.A hypothetical observation bore located at Lock township
- Contours of drawdown exported at
 - 1.20 years at the completion of pumping, and
 - 2.40 years following 20 years recovery.

Time series of drawdown at monitoring points are presented as Appendix G and Figure 4-2. The calculated drawdown at production bores ranges from 48 to 72m. Further treatment of near bore drawdown, well losses and long term bore yield is discussed in Section 4.6. No drawdown is calculated at the lock township which remains beyond the zone of influence of pumping.

Figure 4-2: Modelled drawdown time series

Contours of drawdown at 20 and 40 years are presented on Figure 4-3. Following 20 years pumping the radius of drawdown (defined by the 2m drawdown contour) extends approximately 7.5 km to the west. Following 20 years recovery, the radius increases to approximately 9 km.

4.5 Model Quality Checks

Model quality checks are summarised in Table 4-4 and are acceptable.

Quality Check	Result	Comments
Mass balance error	0% for all time steps	Acceptable
Flow through constant head boundary's	Less than 1% of total water balance	Constant head boundaries do not over-influence results
Flow from wells	40,000 m3/day all time steps in stress period 1.	Wells remain active for duration of pumping stress period.

Table 4-4: Numerical Groundwater Flow Model Quality Checks

4.6 Production Borefield Capacity

Production bore yield is constrained by the water level drawdown induced by pumping and the available drawdown (distance from static water level to pump inlet) at each well.

Planned pumping rates at each production bore have been validated by comparing calculated drawdown to available drawdown as follows:

Drawdown at a pumped bore is the sum of

- aquifer drawdown
- near-well drawdown
- well losses (friction in the well screen and well column)

Each of these has been calculated as follows:

- Aquifer drawdown at each production well has been calculated using the numerical model described above. Drawdown is a factor of; aquifer transmissivity, leakage from overlying formations, storage coefficient of the pumped aquifer and overlying formations, and properties of adjacent aquifers.
- Near-well drawdown has been calculated using the Theis equation to determine the drawdown between 100m and 0.1m radius from the pumping well. This drawdown is calculated at a scale too fine to be simulated in the regional numerical model which has a cell size of 100 x 100m at the borefield. Aquifer transmissivity at each bore is taken from the nearest investigation bore pumping test. Theis worksheets are presented as Appendix H.
- Well losses have been calculated from the well equation derived from the step pumping test at test production bore KPBp04.

The results are summarised in Table 4-5. All bores have the capacity to meet the design flow rate of $4,000 \text{ m}^3/\text{day}$. There is some opportunity to optimise bore yield, particularly by increasing bore yield in the very high transmissivity zone identified at KPB04 and potentially reducing the total number of bores.

Production Bore Site	SWL (m depth)	Pump Setting (m depth)	Available Drawdown (m)	Transmissivity ⁽⁴⁾ (m²/day)	Flow Rate (m ³ /day)	Near well drawdown ⁽²⁾ (m)	Well Loss ⁽¹⁾ (m)	Numerical Model Drawdown ⁽³⁾ (m)	Total Drawdown (m)
KPB01	50.0	140	90	450	4000	9.8	12	48	70
IC4 / KPB02	50.0	140	90	450	4000	9.8	12	60	82
KPB03	39.8	140	100	1000	4000	3.9	12	67	83
KPB04	39.8	140	100	1000	4000	3.9	12	71	87
KPB05	39.8	140	100	1000	4000	3.9	12	72	88
KPB06	34.4	160	125	130	4000	33.8	12	70	115
KPB07	34.4	160	125	130	4000	33.8	12	67	113
KPB08	34.4	160	125	130	4000	33.8	12	66	112
KPB09	26.8	150	123	120	4000	36.8	12	62	110
KPB10	26.8	150	123	120	4000	36.8	10	60	107

Table 4-5: Production bore drawdown calculation

(1) Well Losses based on KPBp04 pumping test

Notes

(2) Drawdown from 0.1 to 100m radius calculated using Theis equation

(3) Numerical Model used to calculate well interference and aquifer boundary effects

(4) Transmissivity estimate from nearest investigation bore site

5 Borefield Design

5.1 General Arrangement

The borefield design comprises 10 bores each with the nominal capacity to yield 180 m³/hr. The target aquifer interval is approximately 150 to 300m depth. Each bore will be drilled to approximately 300 m depth and cased with 300mm DN Class 12 PVC casing to approximately 150m, the underlying aquifer from approximately 150m to 300m will be screened with 200mm DN 316 grade stainless steel wire wound screens with blank pvc sections placed against fine grained and lignite geological intervals.

Bore Locations are presented in Figure 5-1. The rationale behind the layout is to space bores 2000m apart to minimise interference effects, and to keep the bores within the defined deeper more transmissive part of the trough structure.

Bores will be equipped with electric submersible pumps with the capacity to deliver 180 m³/hour – nominally 150 - 200 kW pumps. Detailed pump specification for each bore is dependent on individual bore efficiency and will be determined following bore construction and testing.

Bore heads comprise a concrete pad, 316 grade stainless steel bore head-works, pump control panel, and flanged connection to the collector pipeline.

5.2 Value Improvement Options

Additional value may be realised by:

- Reducing the number of water bores in the borefield, by optimisation of each bore as it is constructed. Individual bore capacity is unknown until the bore is constructed and site specific aquifer properties can be tested. Preliminary investigations indicate that it may be possible to meet the project water demand with a lower number of higher yielding bores, with reduced capital cost.
- 2. Reducing bore spacing by optimisation of bore locations. In highly transmissive aquifers such as the aquifer intersected by KPBp04, bore spacing can be reduced due to reduced interference effects. This option can reduce the total length of pipe and power infrastructure.
- 3. Testing the salinity profile with depth to optimise water quality. It is possible that groundwater salinity varies with depth. The multiple screened intervals in investigation bores KPBi04,07 and 09 provide the opportunity to undertake packered sampling tests where each screen is isolated and pumped to yield a groundwater sample from that screened interval. In the event that salinity stratification does occur, the borefield design might be optimised to yield better quality water. The vertical anisotropy of the aquifer would need to be understood to predict the long term reliability of a vertically stratified borefield.

6 Limitations

The current study is limited by the available data relating to the target aquifer. The geology is reasonably well defined by a moderate density of historic exploration drilling though the majority of historic holes do not fully penetrate the aquifer and hence total thickness is unknown. The only groundwater data available is the 4 test sites studied by IRD (three as part of the current study and one studied in 2013 as part of construction water investigations). Hydrogeological testing was constrained due to land access, particularly the duration of pumping tests. As a result of these constraints aquifer boundary conditions and leakage are inferred from the geological model and have not been confirmed through testing.

It is recommended that subsequent detailed design work include long term pumping tests to provide:

- Data to calculate leakage and boundary effects from the pumping test data
- A data set sufficient to allow transient calibration of the numerical model to a Class 2 confidence level.

7 Acronyms and Abbreviations

Acronym or Abbreviations	Definition
DEWNR	Department of Environment Water and Natural Resources
CEIP	Central Eyre Iron Project
EC	Electrical Conductivity
GWS	Groundwater Science Pty Ltd
IRD	Iron Road Limited
mAHD	Metres Australian Height Datum
SKM	Sinclair Knight Merz Pty Ltd
TDS	Total Dissolved Solids

8 References

Document Number	Document Title	Author
	ETSA Lock Coal Deposit Dewatering Studies	Coffey, 1981
	Assessment of the Tertiary Sand Aquifer, County Musgrave PWA, Eyre Peninsula. DME Report Book 96/11. 1996.	Dowie and Love
	Lock Coalfield Hydrogeological Study – Progress Report No. 1. SADME Report Book 79/83. 1979.	Eberhard and Waterhouse
E-F-66-RPT-0039	Corridor Groundwater Supply Investigation report (FINAL). Report prepared for Iron Road Limited. 2013.	GWS
E-F-16-RPT-0005	CEIP Minesite Hydrogeological Studies	SKM, 2013
	https://www.waterconnect.sa.gov.au/Systems/GD/Pages/default	DEWNR
	https://sarig.pir.sa.gov.au	DMITRE
	Open File Exploration Report. LDH Series Drilling. 1974.	Chevron Exploration Corp
	Open File Exploration Report 80LRM and 81LRM series drilling. 1985.	CRA Exploration
	Open File Exploration Report 80LRM and 81LRM series drilling. R and V series Drilling. 1969	KerMcgee Austrlia
	Open File Exploration Report 32 Series Drilling.1993	Pan Continental Mining Ltd
	Open File Exploration report DP Series Drilling. 1972.	Mines Administration Pty Ltd – Teton Australia Joint Venture
	Clarke, D.K 1998 Groundwater Discharge Tests: Simulation and Analysis. ELSEVIER, Amsterdam`	Clarke, D
	Fetter, C. (1994): Applied Hydrogeology Prentice Hall, New Jersey, 691 pp.	Fetter C
	Krusemann and Deridder, 1994, Analysis and Evaluation of Pumping Test Data Publication 47 IILRI, Netherlands.	Krusemann and Deridder
	McDonald and Harbaugh (1988), A modular three-dimensional finite- difference groundwater flow model. USGS. Techniques of Water Resources Investigations book 6, chapter A1	McDonald and Harbaugh
	Barnett et al, 2012, Australian groundwater modelling guidelines, Waterlines report, National Water Commission, Canberra	Barnett et al.
	Stratigraphic Hole "Tuckey 1" Well completion report. Report Book 81/00019. 1981.	South Australian Department of Mines and Energy

9 List of Appendices

Document Number	Document Title	Author
Appendix A	Well Permits	DEWNR, 2014
Appendix B	Drilling Summary Data Sheets (including lith log, bore construction, air lift log and chip tray photo)	GWS, 2014
Appendix C	Downhole Gamma Survey Logs	GWS, 2014
Appendix D	Sieve Analysis Data Sheets	GWS, 2014
Appendix E	Pumping Test Data Sheets	GWS, 2014
Appendix F	Water Quality Data	GWS, 2014
Appendix G	Model Outputs – Drawdown Data	GWS, 2014
Appendix H	Theis Worksheets	GWS, 2014

Appendix A Well Permits

DEPARTMENT OF ENVIRONMENT, WATER AND NATURAL RESOURCES

PO Box 1046 Mt Gambier SA 5290 Ph: 8735 1134 Fax: 8735 1155

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	229774	
Expiry Date:	31/01/2015	

Permission is hereby granted to:

IRON ROAD LTD ACN 128 698 108 GPO BOX 1164 ADELAIDE SA 5001

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5495/684 Section 8 Hundred of Boonerdo

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 8. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.

- 9. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 10. This work may be subject to inspection by the Department's Drilling Inspectors.
- 11. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

Date: 31/01/2014 Conservation Sonya Knight WATER LICENSING OFFICER Delegate of Minister for Sustainability, Environment and

DEPARTMENT OF ENVIRONMENT, WATER AND NATURAL RESOURCES

PO Box 1046 Mt Gambier SA 5290 Ph: 8735 1134 Fax: 8735 1155

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	229772	
Expiry Date:	30/01/2015	

Permission is hereby granted to:

IRON ROAD LTD ACN 128 698 108 GPO BOX 1164 ADELAIDE SA 5001

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5192/469 Section 48 Hundred of Smeaton

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 8. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.

- 9. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 10. This work may be subject to inspection by the Department's Drilling Inspectors.
- 11. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

Sonya Knight

WATER LICENSING OFFICER Delegate of Minister for Sustainability, Environment and

Date: 30/01/2014 Conservation

DEPARTMENT OF ENVIRONMENT, WATER AND NATURAL RESOURCES

PO Box 1046 Mt Gambier SA 5290 Ph: 8735 1134 Fax: 8735 1155

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	229769	
Expiry Date:	30/01/2015	١

Permission is hereby granted to:

IRON ROAD LTD ACN 128 698 108 GPO BOX 1164 ADELAIDE SA 5001

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5675/903 Section 49 Hundred of Smeaton

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 8. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.

- 9. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 10. This work may be subject to inspection by the Department's Drilling Inspectors.
- 11. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

Sonya Knight WATER LICENSING OFFICER Delegate of Minister for Sustainability, Environment and

Date: 30/01/2014 Conservation

DEPARTMENT OF ENVIRONMENT, WATER AND NATURAL RESOURCES

PO Box 1046 Mt Gambier SA 5290 Ph: 8735 1134 Fax: 8735 1155

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	229768
Expiry Date:	30/01/2015

Permission is hereby granted to:

IRON ROAD LTD ACN 128 698 108 GPO BOX 1164 ADELAIDE SA 5001

To undertake the following water affecting activity:

Activity:	Well Construction
Well Use:	Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5675/903 Section 49 Hundred of Smeaton

- 2. All work is to be carried out in accordance with the enclosed general specifications.
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. Water samples are required from all wells drilled in respect of this permit.
- 5. Strata samples are not required.
- 6. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 7. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 8. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.

- 9. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 10. This work may be subject to inspection by the Department's Drilling Inspectors.
- 11. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or omissions may result in the variation, suspension or revocation of the permit.

Sonya Knight WATER LICENSING OFFICER Delegate of Minister for Sustainability, Environment and

Date: 30/01/2014 Conservation

DR	GOVEI	RNMER SWE Wa	NT OF LL CO uter Reso	SOU SONST	JTH AU RUCTI Act, 1997	USTRA ON R	ALIA REPO	RT	Ŧ	-	1. PI	ERN	1IT N	0:	2	29	76	8	Sit	e
NAME Contact P	OF DRI	LLER	Josi	Pec 1468	h 942	Licen 313	ice No:	3172	<u>5</u> I	PER Posta	Ade		DER a	or lar Sox		opier	tron R	Post	Code	5001
Name of	ATION	of WE	der super	vision					•••••							•••••		FUSL	Coue .	
Data of 9	Survey	24.7	1.201	4 500	veved by	San	M	Meth	H bo	Oni	d helo	16	P5 3	. WI	ELL N	AME		•••••		
GPS CC	ORDIN	ATES	N	., 501	veyeu by			. Wieth	7		ZONI	E 54	6	LA	red or	Pastoral	Lease No.	Sn	nea	ton
G	DA 94/W	GS84	r.	in the the	asting	60	1412	5	_	ū/	ZONI	E 53	e E	Tile/6	ection	Parcel	ID 49	₩		
	GD 66/84	н. — 2	00	thing	x 62	843	04				ZONI	E 52		Jame	of Pr	perty (CT 567	51	903	5
5. SUMM	IARY (P)	lease tic	k approt	oriate bo	exes and a	complet	e all rei	levant d	details)	1					. OI III					
Date work	Commer	nced		21.2.	2014					Dat	e work C	omp	leted	24	2.2	2014				
Work can	ied out:	New V	Vell YES/NO	if yes pla	D ease quote	replaced	 1 well nu	mber	Enlarge	e [1		Reha	abilitate			Back		
Is this an l	Existing v	vell? YES	S/NO if y	es pleas	e quote we	ell numb	per or m	ark loca	ation on	ma	e									
Was well.	Abandone	d? YES	NO if y	es please	state meth	od	00-								70				10	
Maximum	Depth D	rilled	310	(m)	Fina	Depth.	240	(m)		Fina	al Standi	ng W	/ater Le	evel	3.2	(m)	Final Yie	ld	0	(L/sec)
6. DRILI	ING DE	TAILS	If not	a drilled	well, plea	se comp	6 2 W	ter Cut	2, 9, 10, Details	11, 1 (mea	12 and 13 isuremen	as n	om natu	ry tral se	urface to	o nearest	0.1 m)		+	3.755
0,1 COnsi		CLAIIS	Drilling	Method			0.2 110		Wa	ter C	ut	Stan	ding	Tatio		Hole	Cooling at			Colinity
From (m)	To (m)	Diam (mm)	Cable Rotary Down Hamm	Tool, Auger, Hole rr, etc.	Fluid ((Air, W Mud T	Jsed Vater, ype)	Da	ate	From (m)	Wate Dom To Leve n) (m)			ater vel n)	Yield (L/sec)		Depth at Test (m)	Test (m)	Ti Me	est thod	(mg/L) or Taste
0	310	200	Kot	410	MU															
7. CASIN	G LEFT	IN WEL	L									1	_		2.5					
7.1 Dime	nsions	Intern	7.2	Гуре	_	7.	.3 Casing	g Cemer	nted	_	1	-		-	01		Cementing			
From (m)	To (m)	Diam	. S	well Joint, Steel, FR	Welded Col P, PVC, etc.	lar, Y	Yes No From (m)			10 (m)	(bag	ent s)	(litre	er s)	Addi	tives	Method Used		С	omments
0	138	115	CI	255 18	P.V.C	_ [Ô	13	38	80	16	196	0	80kc	Ren	Tremie	_	5	Vo Ben-
138	290	115	CI	055 1	3 P.V.C					-	20	kaj		_						
					1. 11				-				-	-		V				1.1
8. CONS	TRUCTI	ON AT I	RODUC	TION L	EVEL															
8.1 Metho	od		8.2 Scree	n or Casi	ing (*If va	riable ap	erture so	reen use	ed give 1	imits	S)	Oute	r Diam	-				-		Completion
Ope	n Hole		Stol	Туре		(m)	(m)	(II	im)	(п	im)	(1	nm)	-	Mater	rial	Trade Nat	me	0	of Base
Slot	ted Casing	s P.V	Slotk	a ck	155 18	184	190		.6	110	5	14	10	-	P.V.	ç		- 4	200	Samprej
	en(s)	P-VQ	Slot	ted ci	055 18	282	281	3 0	.6	115	5	14	ŏ		P.V	,C				
8.3 Liner	Seal (Pac	ker)		8.4 Gr	avel Packi	ng					13. FO	RMA	TION	LOG	;					
Mate	rial	Depth (m)	Internal Diam (mm)	Meth Plac	hod of ement	Gravel Par Mesh S	ssing i ize	From (m)	To (m)		From (m)		To (m)		1	1	Description of	of Mate	rial	
				-						-	0 R	+	14		Clos	e sto	one		-	
9 IF NO	TADRI	LLEDW	ELL.			_	-			_	14	-	22		San	4			X. 11	
Metho	bd	Depth	Length	Width (m)	Diam (m)	Linit Mate	ng rial	From (m)	To (m)		22		34		Cla	V	instal)			
											34		38		San	61		-	-	
											38		8H	-	500	Yi-		-		
10. DEV	ELOPM	ENT (Stat	te methods	and time t	aken)	Ho	ours	M	inutes	٦	98	-	112		çia	N				
-	Ai	IIF	ł		1.2	k	res				112		124		Sal	d				
102											124		130	2	Cla	Y.	11.8-5	-	-	
11. PUM	IPING TI	EST (mea	surements	from natur	al surface to	nearest 0).1m)		Drau		130)	134	2	San	q		-		
Interval From	Tested	Water Level	Test Method	Depth	Rate	ge Me Me	easuring	Hours Pumper	Diav	n	130	2	265	2	San	4				
(m)	(m)	(m)		(m)	(L/sec) Di	scharge		(m)	-	24	8	171	4	Bet	10	clan			
				1	-				-	-	27	4	310		Sar	id	- M			
											-						1			
12. SAN	IPLES	Water Resc	urces Act	1997 and R	legulations (hereto rec	uire that	strata and	water			-	-			-		-		
The provi					0.	12200					1			11.						

DR	GOVERNMENT OF SOUTH AUSTRALIA Water Resources Act, 1997 I. PERMIT NO: 2 2 9 7 2 Site AF OF DRILLER TOSh. Pech. Lience No. 151725 PERMIT NO: 2 2 9 7 2 Site AF OF DRILLER TOSh. Pech. Lience No. 151725 PERMIT NO: 2 2 9 7 2 Site AF OF DRILLER TOSh. Pech. Lience No. 151725 PERMIT NO: EXAMPLE NO. 164 Addoolde S.A. Postal Addres Site Addoolde Site Addoolde																		
NAME Contact	OF DF Phone/M	RILLER	. J	osh Pe 0468	2ch 947	Lic 2	cence No: 313	1317	25 P	PEF	al Address			and occ Box	upier	Iron t	Roa	9	LTD
Name of	plant op	erator if u	inder s	upervision		*******			·	·····	HY HY	0	JUIUS		2.H		Post C	ode	5001
2. LU		17.1	J D	10		50	N N		th	N	theld	(-)	3. W	ELL N	NAME				
Date of	Survey				veyed by	y <u>QQ</u> :	<u>n .P.V</u>	Meth	nod .t.		J TICIO		4.L	ANDI	DENTIE	FICATION	Sm		00
GPS C	DA 94/	INATES WGS84	E	astina	59	790	1			Y	ZONE 5	i4 i3	Hun	dred)or	Pastoral	Lease No:	Shi	an .	1011
	GD 66/	84	0	acthing	, h'	187	3718				ZONE 5	2	File.	Section	Parcel	ID 70	2 4	69	
5. SUM	MARY	Please ti	ck an	propriate be	exes and	compl	lete all re	levant i	details)	1		-	Nan	ne of Pr	operty	91.01.1	<u></u>	<u>V.1</u>	
Date wo Work ca	rk Comm	ienced New	25 Well	·2·20 13/	14 E	Deepen			Enlarge	Da	te work Cor	nplet	ted 2 Re	7 2 ·	· 2014 • □		Backfi	in [2
Is this a	Replacen	nent well?	YES/	NO if yes place	ease quote	e replac	ced well m	imber	ation on										
Was wel	Abando	ned? YE	ES/NO	if ves please	state met	hod	inder of in	IAT K TOC		1112	<u></u>								
Maximu	m Depth	Drilled	310)(m)	Fina	al Dept	h 288	(m)		Fin	al Standing	Wate	er Level	35	(m)	Final Yie	Id IC)	(L/sec)
6. DRII	LING D	ETAILS	I	f not a drilled	well, plea	ise con	nplete Sect	ions: 6.	2, 9, 10.	11,	12 and 13 as	пес	cessary						
6.1 Con	struction	Details	D	line Mathod	_		6.2 W	ater Cut	Details (me	asurements 1	rom	natural	surface t	o nearest	0.1 m)		- 1	
From (m)	DRILLING DETAILS If not a drilled well, please complete Sections: 6.2, 9, 10, 11, 12 and 13 as necessary I construction Details I construction Details 6.2 Water Cut Details (measurements from natural surface to nearest 0,1 m) I construction Details Casing at Test Multiple as complete Sections: 6.2, 9, 10, 11, 12 and 13 as necessary I construction Details Sections: 6.2, 9, 10, 11, 12 and 13 as necessary I construction Details Diam (mm) Drilling Method Cable Tool, Rotary Auger, Down Hole Hammer, etc. Fund Used (Air, Water, Mud Type) I construction Details Date Vater Cut Standing Water Cut Standing Water Level (L/sec) If not a drilled well, please complete Sections: 6.2, 9, 10, 11, 12 and 13 as necessary I construction Details Diam (mm) Diam (mm) Casing at Test (Mult, Water, Mud Type) I construction Prival To (Mult, Water, Mud Type) Vater Cut Standing Water Cut Standing Wate																		
0	310	200	R	otary	Mud	-				_			_					-	
GOVERNMENT OF SOUTH AUSTRALIA DRILLERS WELL CONSTRUCTION REPORT I.PERNIT NO: I.D. I.P. I.P. I.P. I.P. I.P. I.P. I.P.																			
														F ,		18-12			
7. CASI	NG LEF	T IN WE	LL			_								_			12.5		
7.1 Dim	ensions	Inter	nal	7.2 Туре	-		7.3 Casin	g Cemer	nted	_	1	10		0		Cementing	-		
From (m)	To (m)	Dia	m. m)	Swell Joint, Steel, FR	Welded Co P, PVC, etc	llar,	Yes No	Fro (m	m (1	10 m)	(bags)		(litres)	Add	litives	Method Used		C	omments
0	109	3 115	5	Class 1	P.N.C			0	10	28	806	ų I	1960	80,8	bent	Tremie		5%	Bent
108	288	115	5	Class I	8 P.V	.C					20kg			5					-
	-		-		-	-		-	-	-		-			-				
8. CON	STRUC	FION AT	PROI	DUCTION L	EVEL									-					
8.1 Met	nod	-	8.2 5	Screen or Cas	ing (*If va	riable	aperture so	reen us	ed give li	imit	s) Diam I Ou	torD	liam				-	(ompletion
🗌 Ор	en Hole			Туре		(m)	10 (m)	Аре:	nm)	inde. (I	nm)	(mm	1)	Mate	rial	Trade Na	ne	1.	of Base
Slo	tted Casi	ng	Cla	SS 18 SIC	Hed	216	222	. 0.	.6	115	5 1	40	_	0.4	.6			Im	1 JUMP
	een(s)	1	CIO	55 1851	oHed	2980	286	0.	6	119	5 1	40		P.V	.0			En	d cap
8.3 Line	r Seal (P	acker)		8.4 Gr	avel Packi	ng					13. FORM	IAT	ION LO	G					
Ma	erial	Depth (m)	Inte Di (m	am Plac	hod of ement	Gravel Mesh	Passing Size	From (m)	To (m)		From (m)		To (m)		61-	Description of	f Materia	al	
	-	-	-	_	-					-	N	1	2	Clon	010	WE .			The state of
9. IF N	OT A DE	RILED	WELL		197			1	1		12	2	20	San	à				10.1
Met	hod	Depth (m)	Lengt (m)	h Width	Diam (m)	Li Ma	ining aterial	From (m)	To (m)		20	100	32	Clau	1		1	U.	
											32	3	6	San	6				
						1					36	8	4	Clar	1		-	-	
10. DE	VELOP	MENT (St	ate met	hods and time t	aken)		Hours	М	linutes		80	0	0	day	1				
	-	lis lis	1			1	0				110	F	20	San	6				
											120	1	30	ga	X				
11. PU	MPING	TEST (me	asurem	ents from natur	al surface t	o neares	at 0.1m)		P		130		36	Jan	a	-		-	-
Interva	l Tested	Water Level	Te	est Depth	Discha	rge 1	Method of Measuring	Hours	d Down		130	2	16	500	4				
(m)	(m)	(m)	TAICI	(m)	(L/se	c)	Discharge		(m)	-	192	10	10	301					
			-		-					-				1000					
																		2	
12. SA	MPLES	- WI - D		A at 1007 and 1	agulation	thereta	require that	strata and	l water									1	1.33
The prov	usion of th	e water Re	sources	ACT 1997 and 1	Cegulations	alereit	require tildt	Susan Gill											

DE	GOVE	RNME	NT OF	SO	UTH A	USTI	RALIA				2			_		1 1 10			
DR	ILLER	KS WE	ater Reso	DNST ources A	RUCT. Act, 1997	ION	REPO	RT	۴		1. PER	MI	IT NO	2	29	77	4	Sit	e
NAME	OF DRI	LLER.	Jas	sh F	ech 94	. Lic	ence No:	1317	25 P	ER	MIT HO	LD Gi	ER or	land oc	supier 1164	Iron)	Roc	NG LTD
Nome	Phone/Ivio	DHE NO.:.		- <u>19.0</u> .		<u> </u>				Usta	AC	le	laid	2 <	S.A .		Post	Code	5001
2. LOC	CATION	OF WF	tder super	vision			*******	**********				******		Perf	×		Pos	Coue .	
Date of	Survey	2.3	.2016	1 5	weved h	50	m.n	Meth	Ha Ha	no	held !	GP	3.	VELL	NAME				
GPS C	OORDIN	ATES		501	veyeu by		~	. Wieth		2	ZONE 5	4	4. J	AND	Pastora	Lesse No:	B	cons	obs
G	DA 94/W	GS84	East	ing	594	43	9	_		Y	ZONE 5	3	File	Sectio	Parcel	ID 8		175745-5-6-2	
U A	GD 66/84	Ŧ	Nor+	hing	62	821	471				ZUNES	02	Na	ne of P	roperty	CT 549	5	684	
5. SUM	MARY (P	lease tic	k approp	riate bo	oxes and	compl	ete all rei	levant d	letails)				- 1	23	.201	u -		185	A 24 5
Date wor Work car	rk Comme: rried out:	nced New '	Well	<u>. 0</u> . <u>.</u> .	2014 D	eepen			 Enlarge	Dat [e work Con	nple	eted R	habilitat	e 🗌		Bac	kfill [
Is this a l	Replaceme	nt well?	YES/NO	if yes pl	ease quote	replac	ed well nu	mber											
Is this an	Existing v	vell? YE	S/NO if y	es pleas	e quote w	ell nun	nber or m	ark loca	ation on	maj	<u>e</u>								
Was well	l Abandone	ed? YES	254 (es please	state met	10d	232			Fine	al Standing	Wat	ter Leve	35	(m)	Final Yie	-I4	4	(L/sec)
6. DRIL	LING DE	TAILS	If not	a drilled	well, plea	ise con	plete Sect	ions: 6.2	2, 9, 10, 1	11, 1	12 and 13 as	neo	cessary		(III)	T mu TK	J.d		(11300)
6.1 Con:	struction D	etails	1				6.2 Wa	ter Cut	Details (mea	surements f	ron	n natura	surface	to nearest	0.1 m)			
From (m)	From (m) Diam (mm) Diam (mm) Diam (mm) Fluid Used (Air, Water, Down Hole Hammer, etc. Fluid Used (Air, Water, Mud Type) Fluid Used Date Water Cut Stading Water (m) Estimated Vield (m) Casing at Test (m) Test Method Salinity (mg/L) or Taste 0 254 200 Rotory MUC - - - - - - - - 0 254 200 Rotory MUC - - - - - - -																		
Ô.	0 254 200 Rotary Mud																		
	U 254 200 Kotany MUG																		
7. CASI	NG LEFT	IN WEI		يا أن			ie verzen ier ee			1			1.1						
7.1 Dim	ensions	Intern	7.2 T	Гуре	Welded Cal	las	7.3 Casing	g Cemen	ted T	20	Coment	T	Water	0	ther	Cementing	5		
(m)	10 (m)	Dian (mm	n. 1)	Steel, FR	P, PVC, etc.	1ar,	Yes No	(m)) (r	n)	(bags)		(litres)	Ada	litives	Method Used		C	omments
0	108		Clo	1512	P.V.C			0	10	8	80120	y	1960	8000	, Bent	Tremit	2	5%	Bent
108	1151		-									-			-	1.1.1			
100																			
8. CON	STRUCT	ION AT 1	PRODUC	TIONL	EVEL	1.1.1.			d airea li	mite	0	-	-		-		-		
8.1 Meth	nod en Hole		8.2 Scree	Type	ing (=11 va	From	To	Aper	ture* I	nner	Diam Ou	ter I	Diam	Mat	erial	Trade Na	me	T	Completion of Base
Slo	tted Casing	g	class	12 5	lotted	150	156	C.	.6	(11		çum	10	P.V	.C			20	Sump
Sci	reen(s)		class	125	lotted	186	192	0.	6					P.V	. C			50	With
Oti	her, give de	tails:	Class	12.5	10 Hed	224	1.230	Q.	6					<u><u> </u></u>	· C			E1	u cap
8.3 Line	er Seal (Pad	(ker)	Internal	8.4 Gr	avel Packi	ng Gravel l	Passing	From	То	٦	From	LAI	To	JG		Description	f Mat	arial	
Mat	terial	(m)	Diam (mm)	Plac	ement	Mesh	Size	(m)	(m) -		(m)		(m)			Description	Ji Wiat	citai	
				-		-			_	-	2		3	Lin	nd at	one			-
9 IF N	OT A DRI	LEDW	VELL		-		_	-		-	10	1	42	Ela	M				
Met	hod	Depth (m)	Length (m)	Width (m)	Diam (m)	Li Ma	ning aterial	From (m)	To (m)		42	0	10	Sor	d	1.21			
	-1	S 1									90	1	14	00	LY.			-	
		281				4			.	_	753	25	153	Hor	dRe	rk	-		
10. DE	VELOPM	ENT (Sta Me	thod	and time I	taken)	1	Hours	M	inutes	1	423	1		1101	64 . M.S	SA			
12-1	Aic	liç	ł				6			-			_			a george			
-			100000000			Con General	0.1-2	I	_			-		2	1 5	12.37		1000	
II. PU	MPING T	Water	asurements t	Pump	Discha	rge I	Method of	Hours	Draw										
From	To	Level (m)	Method	Depth (m)	Rate (L/see		Measuring Discharge	Pumpeo	d Down (m)										1. (2.)
(iii)	(111)													-		-			
										-		-		-		11 11			
10.01				I	_		-		1	-		-		1 7			100	11	
The prov	vision of the	Water Res	ources Act	1997 and H	Regulations	thereto a	require that :	strata and	water			1							3

DR	GOVE CILLEI	RNME RS WI	ENT O	of sol	UTH A	USTF ION	RALIA REPO	RT	a '	1			NO	2	29	76	9	7	
		и	ater Re.	sources I	Act, 1997				- 1 #	<u>.</u>	I. PER	MIT I	NU:		~ '				
NAME	OF DR	LLER		JOSh	Pech Qua	Lic	ence No:	13172	5 PE	ER	MIT HOI	DE	R or 1	and occ	upier	Iron k	200	id	110
Contact	Phone/Mo	bile No.:		57 00	1912		1		Po:	sta)	l Address	WH	Sk	Ade	hide	0.2			sool
Name of	plant ope	rator if u	nder supe	ervision					••• •••						MINC.		Pos	t Code	2001
2. LOO	CATION	OF WI		4		500	0 04		Ца	20	hold	200	3. V	VELL N	AME				
Date of	Survey.	10.) · 201	Su	rveyed by	y	1.1.1.	. Metho	od . HOI		1 TOULD	.1-	4. L	ANDI	DENTI	FICATION	5		
GPS C	DA 94/W	VGS84	Eas	ting	bar	114					ZONE 5	4	Hun	dredor	Pastora	Lease No:		nea	HOU
	GD 66/8	4	nac	thing	6	184	357	-	1 3	1	ZONE 5	2	File	Section	Parcel	ID HY	15	0.03	
5 SUM	MARY (P	lease ti	ck appro	nriate h	ares and	compl	ete all rei	levant di	etails)	-	-		Nan	ne of Pr	operty	<u></u>	4	192	
Date wor	k Comme	nced		3.3.	2014				E	Date	e work Com	plete	d. 10	3.2	014				
Work car	ried out:	New	Well		Ι	Deepen			Enlarge	E			Re	habilitat	e 🗆		Bac	kfill	
Is this a l	Replaceme	ent well?	YES/NC) if yes pl	ease quot	e replac	ed well nu	mber											•••••••••••••••••••••••••••••••••••••••
Is this an	Abandon	ed? YE	S/NO II	yes pleas	state met	hod	nder or m	ark local		ia.	2								
Maximu	m Depth I	Drilled	304	(m)	Fin	al Depti	h 302	(m)	F	ina	al Standing '	Water	Level	1470	35(m)	Final Yie	eld	40	(L/sec)
6. DRIL	LING DE	TAILS	If no	ot a drilled	i well, ple	ase com	plete Sect	ions: 6.2,	9, 10, 11	1, 1	2 and 13 as	nece	ssary	and the					
6.1 Cons	struction D	Details	D III.	. Martha d		_	6.2 Wa	ter Cut I	Details (m	iea	surements f	rom n	atural	surface t	o nearest	0.1 m)	_	-	
From	From (m) To (m) Diam Diam (mm) Diam Diam (mm) Fluid Used (Air, Water, Down Hole Hammer, etc. Fluid Used (Air, Water, Mud Type) Date Water Cut Standing Water (m) Estimated Yield (L/sec) Hole Depth (Test (m) Casing at Test (m) Test Method Salinity (mg/L) or Taste 0 145 370 Roberty Mud 0 <t< td=""></t<>																		
(m)	From (m) To (m) Diam (mm) Cable Tool, (mm) Fluid Used (M, Water, Hammer, etc. Date Water (m) Water (m) Depth Test (m) Casing at Test (m) Test (mg/L) or Taste Test (mg/L) or Taste O 14.5 370 Rodory Mud Date Date Date Date Depth (m) Casing at a Test (m) Test (m) Casing at Method Test (mg/L) or Taste Test (mg/L) or Taste Test (mg/L) or Taste Depth at Test (m) Test (m) Casing at Method Test (mg/L) or Taste IHS 304 230 Rofory Mud Date Date Date Date Depth at Test (m) Casing at Test (m) Test Method Casing at Test (mg/L) or Taste																		
6	Image: Construction Construction																		
THS	Hammer, etc. (m) (m) (m) (m) 0 145 370 Rotary Mud - <t< td=""></t<>																		
	U 145 570 Kording mild 145 304 230 Rotary mud																		
7. CASI	NG LEFT	IN WE		Tuna		- 1	73 Casing	Cement	ed	-			_	-			_		
From	To	Inter	nal	Swell Joint.	Welded Co	llar.	7.5 Casing	From	To		Cement		Vater	Ot	her	Cementing		-	omments
(m)	(m)	Diar (mr	m. n)	Steel, FR	RP, PVC, etc		Yes No	(m)	(m))	(bags)	(1	itres)	Add	itives	Used		10.01	O I
0	144	25	2 (1	055 1	8 P.V.	C		0	144	1	240x20	98	280	48000	Bent	Drill Pif	re	10%	Bent
144	302	134	C	1055 1	8 P.V.	C			-	-		1-	-				-		
	-					-				-									
8. CON	STRUCT	ION AT	PRODU	CTION I	EVEL														14
8.1 Meth	lod		8.2 Scr	een or Cas	ing (*If va	ariable	aperture sc	reen used	give lin	nits) Diam I Ou	ter Dia	m	-	_		-	1-	Completion
🗌 Op	en Hole			Туре		(m)	(m)	(mn		(m	im)	(mm)		Mate	rial	Trade Na	me	-	of Base
Slo	tted Casin	g	SIS	Scree	2	182	188	0.5		5	0 16	5		53	-	Johnso	110	1	8m Sum
LA Sci	een(s)	0	3/5	Scree	6	243	254	0.5		50	16	202	-	212		John So	200	IN	Endico
	ner, give d	etails:		Scier	Const Darak	118				ne.	13 FORM	ATIC	DNLC	G			76.78-1-		
8.3 Lane	r Sear (Pa	Depth	Interna	I Mei	thod of	Gravel I	Passing 1	From	То		From		Го		1	Description of	of Mat	erial	
Mai	erial	(m)	(mm)	Plac	cement	Mesh	Size	(m)	(m) -		. (m)	(m)	12.00	-	- 0	-		
10 106) L. market	134	134					-			X	14	>	CION	: 510	ne -		1	
(utier	K-POCKE	LEDI	VETT	-	-			-			14	22		San	d				
9. IF N	nod	Depth	Length	Width	Diam	Li	ning	From	To (m)	1	22	31	4	Clau	1			2	
		(m)	(m)	(m)	(m)	IVIa	lienai	.(0)	(10)		34	38	3	500	8				
110	1	1			(1 E			-		38	84		clay	1				
10. DE	VELOPM	ENT (St	ate method	Is and time	taken)				_	1	84	88		Sano	1.	-	-		- Production
		M	ethod	0.1	~	1	Hours	Mit	nutes		112	11	ii ii	San	1		-		
15	Je	- SCII	een-	(HICL	++	-	7	-			124	13	0	Clow	A				
11 010	MPINC T	EST (ma	asurement	s from natu	ral surface t	o neares	t (0.1m)				130	13	6	San	d				
Interva	l Tested	Water	Tost	Pump	Discha	arge I	Method of	Hours	Draw		136	14	2	clay					
From	To	Level (m)	Method	d Depth (m)	Rat (L/se	e M c) J	Measuring Discharge	Pumped	(m)		142	20	8	San	1			117	
(111)	(III)										268	2	14	Brow	In cla	24	1.	1,119	
0.5	1.5								1		274	30	24	San	d.	. Aller		-	
									l]			-	-		and the second	-		- State
12. SA	MPLES	Water Re	sources Ac	t 1997 and l	Regulations	thereto r	require that s	strata and v	water									-	

Appendix B Drilling Summaries

Drilling	summary re	nort				Hole:	KPBi04			
Diming	Date started:	21/02/2014			Date completed:	23/02/2014				
	Duto otariour				Date completed	20/02/2011				
	Drilling Co./Rig:	Thompson / Rig 18		Co-ordinates (GDA94, Z54): E	601413	GPS			
	Driller:	Josh Pech		Notural ourfood	N	6284304	coordinates/elevation taken with handheld GPS on 25/2/2014			
				Natural Surface	elevation. (IIIAHD)	125				
HSEC										
Incident dese	cription		Action			Follow up				
Field obse	rvations									
EOH Airliftin	g Summary									
Depth of airline (m)	Post-test SWL (m) ^[2]	Airlift yield (L/s)	Airlift period (hours)	EC (mS/cm)	рН	Temp. (ºC)	Other Observations			
100	38.96 (14/03/14)	13 (average)	8.25	41.6	6.96	25.1	SWL m below top of steel casing			
Notes:	2. SWL as meters below	r ground level		-						
Lithologic	al Summary (refer	full lithological log fo	r full details)	Bit log		Mud log				
Depth to	Interp. Log ^[1]	1	Description	Depth (m)	Type (inches)	Depth (m)	Description			
0.2	Qh	Topsoil and Calcrete		0 - 310	Drag Bit 7 7/8 in	0 - 310	<u>I</u>			
14	Qh	Sandy clay: red			1		1			
22	Qh	Clayey sand: yellow and wh	ite, medium-very coarse		1		<u> </u>			
30	T (Upper)	Sandy clay: grey and red			1		1			
32	T (Upper)	Clay: grey and red, sand in	places		1		• •			
86	T (Upper)	Clay: grey, grading to Lignite	e							
88	T (Upper)	Lignite		Construction	log		[4]			
102	T (Upper)	Clay: grey and dark grey		Depth setting	Material/grade	Diameter/size	Purpose ¹⁴			
114	T (Upper)	Clay: grey, with Sand: coars	e to very coarse	ousing			-			
120	T (Upper)	Sand: coarse to very coarse		0 - 184	PVC Class 12	125 mm / 5 in	Blank casing			
124	T (Upper)	Sandy Clay: grey, with Sand	: coarse to very coarse, minor Lignite	184 - 190	PVC Class 12	125 mm / 5 in	Screen, machine slotted, 0.5 mm			
128	T (Upper)	Sandy Clay: grey, minor Lig	nite	190 - 222	PVC Class 12	125 mm / 5 in	Blank casing			
130	T (Upper)	Clay: grey with brown and b	lack	222 - 228	PVC Class 12	125 mm / 5 in	Screen, machine slotted, 0.5 mm			
140	T (Upper)	Sandy Clay: grey and dark g	grey	228 - 282	PVC Class 12	125 mm / 5 in	Blank casing			
140	T (Upper)	Clay, groy with dark lignitic	prey, with Sand: coarse sub-rounded	282 - 288	PVC Class 12	125 mm / 5 in	Screen, machine slotted, U.5 mm			
142	T (Upper)	Clay; giey with dark lightlich	enses and pale sandy lenses	200 - 290		125 11117 5 11	Collapsed hole			
168	T (lower)	Sand: med-very coarse, cles	an with minor Sandy Clay: nale arey and Lignite	230-310	ť	ŀ	Collapsed Hole			
184	T (Lower)	Lignite	an, with minor bandy only. Pare grey and Eighte				•			
190	T (Lower)	Granules (2-4mm): poorly so	prted sub-angular, with Pebbles (to 8mm) and Sand: med-ve		4					
200	T (Lower)	Sand: med-coarse, brown, v	vith Lignite		1					
208	T (Lower)	Sand: med-very coarse, bro	wn, with Pebbles (to 8mm) sub-angular and Lignite	Seal						
214	T (Lower)	Lignite		0 - 125	Cement grout		Seal in borehole annulus			
220	T (Lower)	Sand: med-very coarse, bro	wn	125	Cement boot		Contain cement grout in overlying interval			
228	T (Lower)	Granules, Pebbles (to 8mm)	and Sand, brown, minor Lignite	128	Cement boot		Contain cement grout in overlying interval (back-up)			
230	T (Lower)	Sand: med-coarse, brown, r	ninor Lignite		1					
232	T (Lower)	Granules, Pebbles (to 8mm)	and Sand, brown, with Lignite		1					
234	T (Lower)	Sand: coarse, with Granules	s, minor Lignite							
238	T (Lower)	Lignite, with Granules and P	Pebbles	Gravel Fill:	•					
240	T (Lower)	Lignite		138 - 290	Natural pack		Gravel not placed in borehole annulus			
244	T (Lower)	Lignite, with Sand: med-coa	rse				1			
246	T (Lower)	Clay: pale grey, with Sand: r	med-coarse		ļ		<u>ļ</u>			
250	T (Lower)	Sand: med-coarse, clean, m	ninor grey Clay cuttings		<u> </u>		<u> </u>			
262	T (Lower)	Lignite, with Sand: med-coa	rse		1					
270	T (Lower)	Sand: med-very coarse and	Granules, with Lignite	Stand Pine						
278	T (Lower)	Lignite			0.71		One of Direct			
280	T (Lower)	Lignite, with Sand: med-coa	rse	0.81	SIL I	1	Stand Pipe			
282 294	I (Lower)	Sand: coarse-very coarse		1m x 1m x .3m	Cement		Cement Block			
204 206	I (Lower)	Sand: coarse-very coarse a	no Granules, with Lignite		ł	ŀ	ł			
200 302	T (Lower)	Grapulas and Sandy model	r Lignite		!		<u> </u>			
302	T (Lower)	Lignite with minor Sand	ay coarse, with minor Lignite		ļ		<u> </u>			
310	T (Lower)	Sand: med-very coorea	o Granules, minor lignite	Notes:	4. Purpose e.g:					
010	(LOwer)	Ganu. meu-very coarse, with	r Granaics, Inition lighte		Casing: Surface Ca	sing, Pre-collar, Production Casing,	Screened Production			
Notes: 1. Int	erpretted log: Oh (quarte	rnary), T (Tertairy - Upper an	d Lower)		Seal: Cement Pad,	Well Seal, Cement in Casing, Ceme	ent boot			
Grey Clay cut	tings' recorded in some i	ntervals are likely to be contra	amination from an overlying interval of unstable Clav		Gravel Fill: Filter Pack, Backfill, Natural pack, Collapsed Hole					
	-									

Drilling su	mmary repo	ort		Hole:	KPBi04	
	Date started:	21/02/2014		Date completed: 23/02/2014		
	Drilling Co./Rig: Driller:	Thompson / Rig 18 Josh Pech		Co-ordinates (GDA94, Z54): E	601413 6284304	
	mant			Natural surface elevation. (mAHD)	123	
Arrint Develop	ment					
	Date:	1-2/03/2014		Airlifted by:	TDC (Lloyd M)	
	Start Time:	1/3/14 1400		Post airlift SWL (m bql):	38.25	3/3/14 1500
	Finish Time	2/3/14 1325		Lift Flow Rate (L/s):	13	
Tota	al Time Airlifted (hr):	8.25		Volume Lifted (m3):	386.1	
				Depth of Airline (m):	100	
Time	EC (mS/cm)	рН	Temp (°C)	Comments		
1/3/14 1400	e EC (mS/cm) pH 1400 1730 1740			Start airlifting (flow rate visual estimate 10 L/s)		
1/3/14 1730				Cease airlifting (flow rate visual estimate 10 L/s)		
2/3/14 0740				Resume airlifting (flow rate visual estimate 15 L/s)		
2/3/14 0950	39.8	6.86	-	Rotten egg smell, clear but tainted grey/brown		
2/3/14 1005	40	7.12	23.7	Rotten egg smell, clear but tainted grey/brown		
2/3/14 1040				Cease airlifting (air stopped working, troubleshooting	g - found kink in 25mm po	ly)
2/3/14 1140				Resume airlifting		
2/3/14 1150	40.8	7.18	25.1			
2/3/14 1155				Realised water temp is 25degrees so recalibrated p	H to 7=7	
2/3/14 1200	40.2	6.75	24.7	rotten egg smell dereased slightly?, clear, slightly ta	ainted grey/brown	
2/3/14 1215	40.7	6.94	25.3	as above		
2/3/14 1230	41.9	6.86	25.3	as above		
2/3/14 1240	41.6	6.87	24.9	as above		
2/3/14 1250	41.6	6.88	25.1	as above		
2/3/14 1305	41.6	6.86	25.2	as above		
2/3/14 1320	41.6	6.96	25.1	as above		
2/3/14 1325				Stop Airlifting (flow rate visual estimate 15 L/s)		

Drilling summary report	t					H	ole: KPBi0	4	
	Date star	rted: 21/02/2	2014		Date completed:	23/02/2014			
	Drilling Co./	/Rig: Thompson / Rig	18		Co-o	rdinates (GDA94, Z54)	E	601413	
	Dr	iller: Josh Pech			Nat	ural surface elevation. (r	N nAHD)	6284304 123	
Chin Tray Photos									
	1.083	C. WREDEN					10 100	1	
			AND AND	4/2/52-12	1				
A State of the second			A DE CONTRACTOR	KPEOT	1 - A. C.				1
and the second second			Carlo Bar	no.ag/	16 M. B.				1. C
2000	180-251	14-141	200-202	160-152	120-132				
2220	291-28	247-24		162-169	112-131	ST-8"	40-42	2-4	
1000	284-286	314-246	2011-224	14-14	124-134	84-16 E	42-44	4-6	
	286-285	246-618	245-141	165-168	126-128	N-11	44 14	6-8	
	258-270	210-102	24-10	142-1760 San	13-10	88-90	48-50	8-10	11. T
	290-292	150-252	219-34	190-172	10-13E	70-92	50-52	10-12	
	272-279	851-15¥	912-214	172-FM	152-159	92-77	52-54	12-14	
	299-296	15V-13	116-916	141-138	154-154	N-76	54-56	N-16	
	196-278	11-12	216-119	116-CN	175-159	76-75	56-59 K	1575.15	
	273-300	20-16	21-310		137-160	78-100	58-60	19-20	
1.24	502-902	740-112	110-112	192-194	192-192	Hoo-see	60-62	20-21	
	302-304	117-14y	101-111 101-111	197-18	110,00	102-104	62-6Y	22-2Y	1
Street and	Dirt-32	211-214	174-222	186-138	116-113	IDV-DL	14-66	24024	1 Alexandre
		24-12	129-120	10-170	HE-100	tos - tos	66-69	28-24	4
	Pak	17+-27	the-sty-	130-172	130-151	10-112		34-32	1
		TR-SM	Em-spe	172-19y CR	152-154	112-114	72-24	32-54	
	21	In-IX	234-324	191-198	174-146	114-116	74-2	34-36	10
and the second	0-5-1	294-27	R2-X3	111-172	12-154	116-110 500	76 - 74	36-79	.t
	0.25-04	211-20	23-24	18-20	15Y-160	117-120	79-80	38-40	1
NOTES:	1		NY PORT AND A					ALL DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNE	

Drilling	summary re	nort				Hole:	KPBi07			
erning	Date started:	25/02/2014			Date completed:	26/02/2014				
	Date started.	23/02/2014			Date completed.	20/02/2014				
	Drilling Co./Rig:	Thompson / Rig 18		Co-ordinates (GDA94, Z54): E	597907	GPS			
	Driller:	Josh Pech			N	6283718	coordinates/elevation taken with handheld GPS on			
				Natural surface	elevation. (mAHD)	117	20/2/2014			
Incident desc	ription		Action			Follow up				
Field obse	rvations									
EOH Airlifting	Summary				1		1			
Depth of airline (m)	Post-test SWL (m)	Airlift yield (L/s)	Airlift period (hours)	EC (mS/cm)	рН	Temp. (⁰C)	Other Observations			
100	35.41 (14/3/14)	9.14 (average)	7	62.2	7.01	27.1	SWL m below top of steel casing			
Notes:	2. SWL as meters below	/ ground level								
Lithologic	al Summary (refer	full lithological log fo	r full details)	Bit log		Mud log	•			
Depth to	Interp. Log ^[1]	L	Description	Depth (m)	Type (inches)	Depth (m)	Description			
	Qh	Paperty Claurer	, writte	0 - 310	Drag Bit 7 7/8 in	0 - 310	L			
4	Qh	Sandy Clay: red	ato araval		I		<u> </u>			
ю 10	Qh	Clavey Sand: rod/orongo	ith Calcrete gravel		1 1		1			
10	Qh	Sandy Clay: rod/pale area	וווי סמוסוכוב צומיבו		<u>.</u>		<u>.</u> 1			
14	Qh	Clavov Sand: orange and w	hito grading to red and halo grav		1		I			
28	T (Upper)	Clayey Sand. Orange and w	nite grading to red and pare grey	0			•			
32	T (Upper)	Clay: red/pale grey	nd and Granulas	Construction		D () ()	– [4]			
34	T (Upper)	Clayou Sand: rod and pale of	real model was a control with Grapulas and Pabbles to 7mm	Depth setting Casing	Material/grade	Diameter/size	Purpose			
38	T (Upper)	Sandy Clay: pale gray and r	od			105 / 5 :				
46	T (Upper)	Clay: pale gray and red	eu	0 - 216	PVC Class 12	125 mm / 5 in	Blank casing			
54	T (Upper)	Clay: pale grey with minor re	ed and vellow mottling	216 - 222	PVC Class 12	125 mm / 5 in	Screen, machine slotted, 0.5 mm			
62	T (Upper)	Clay: grey/green with minor	vellow mottling	222 - 248	PVC Class 12	125 mm / 5 in	Blank casing			
64	T (Upper)	Clay: grey/gloon mannino	Johow Modaling	248 - 254	PVC Class 12	125 mm / 5 in	Screen, machine slotted, U.S mm			
68	T (Upper)	Sand: fine-med, white, clear	n, with Clay: grey/blue	234 - 286	PVC Class 12	125 mm / 5 in	Screen machine slotted 0.5 mm			
72	T (Upper)	Sand: med. pale brown, clea	an, with Clay: grey/blue	200-200	PVC Class 12	125 mm / 5 in	Sump black casing with and can			
78	T (Upper)	Clay: white and pale grey, w	ith Sandy Clay: pale grey and blue/grey in lenses	288 - 310		123 11117 3 11	Collansed hole			
86	T (Upper)	Clay: dark grey, black, ligniti	ic	200 - 510	I	É				
100	T (Upper)	Clay: blue/grey and dark gre	ey, with Sand: med-coarse		ł		1			
114	T (Upper)	Clay: dark blue/grey, grading	g to black		4					
124	T (Lower)	Sand: coarse, pale brown gr	rading to brown		1		1			
130	T (Lower)	Sand: coarse-very coarse, d	lark brown, lignitic	<u>Seal</u>						
132	T (Lower)	Lignite		0 - 108	Cement grout		Seal in borehole annulus			
134	T (Lower)	Lignite, with Sand: coarse		108, 110 & 114	Cement boot		Contain cement grout in overlying interval			
136	T (Lower)	Sand: coarse, dark brown, v	vith Lignite		İ		l			
138	T (Lower)	Lignite, with Sand: coarse			İ		l			
148	T (Lower)	Sand: coarse, with Lignite			Ĩ		1			
160	T (Lower)	Lignite, with Sand: coarse-v	ery coarse		I					
162	T (Lower)	Sand: med-coarse, brown, li	ignitic	Gravel Fill:						
166	T (Lower)	Sand: med, brown		114 - 288	Natural pack		Gravel not placed in borehole annulus			
168	T (Lower)	Sand: med-coarse, brown, r	ninor Lignite		1		Į			
178	T (Lower)	Sand: med-coarse, pale bro	wn, clean		I	l	1			
182	T (Lower)	Sand: coarse-very coarse a	nd Granules		l		1			
200	T (Lower)	Lignite			ļ					
202	T (Lower)	Sand: med-coarse, pale bro	wn, clean	-	1		I			
204	T (Lower)	Sand: very coarse, pale brow	wn, clean	Stand Pipe:	•					
206	T (Lower)	Lignite		0.83	STL	I	Stand Pipe			
236	T (Lower)	Sand: coarse-very coarse, p	ale brown, clean	1m x 1m x .3m	Cement		Cement Block			
238	T (Lower)	Sand: coarse-very coarse, p	ale brown, clean, with minor pale brown/white clay		I		I			
242	T (Lower)	Sand: med, pale brown			I	-	I			
290	T (Lower)	Sand: med-coarse, pale bro	wn, clean		ł	L	ł			
302	T (Lower)	Clay: grey and black (lignitic	c), with Sand: med-very coarse and Granules			L				
310	T (Lower)	Sand: med-very coarse, with	n sand size white grains and minor grey clay	Notes:	4. Purpose e.g:		Orean and Description			
└──── [!]		<u> </u>			Casing: Surface Ca	Ising, Pre-collar, Production Casing,	Screened Production			
Notes: 1. Inte	erpretted log: Qh (quarte	rnary), T (Tertairy - Upper an	d Lower)							
					Gravel Fill: Filter Pa	аск, васкtill, Natural pack, Collapsed	a Hole			

Drilling sum	nmary report			Hole:	KPBi07	
	Date started:	25/02/2014		Date completed: 26/02/2014		
	Drilling Co./Rig: Driller:	Thompson / Rig 18 Josh Pech		Co-ordinates (GDA94, Z54):	E 597907 N 6283718 D) 117	
Airlift Developm	nent				,	
Tota	Date: Start Time: Finish Time I Time Airlifted (hr):	2/03/2014 2/3/14 1500 3/3/14 1232 7		Airlifted b Post airlift SWL (m bgl Lift Flow Rate (L/ Volume Lifted (m:	y: TDC (Lloyd M)): 34.4 s): 9.14 3): 230.3	4/3/14 0815
				Depth of Airline (h	n): 100	
Time	EC (mS/cm)	рН	Temp (°C)	Comments		
2/3/14 1500				Start Airlifting (flow rate estimate 5 L/s)		
2/3/14 1607	65.5	7.25	27.1	dirty brown (flow rate estimate 8 L/s)		
2/3/14 1640	67.7	7.19	27.0	cloudy brown		
2/3/14 1715	66.7	7.17	27.0	cloudy brown		
2/3/14 1740	68.0	7.16	26.6	cloudy light brown (flow rate estimate 8 L/s)		
2/3/14 1800				cease airlifting		
3/3/14 0830				resume airlifting, dirty brown/black during first hou	ır (flow rate estimate 10 L/s)	
3/3/14 1140				cease airlifting (hose became kinked)		
3/3/14 1210				resume airlifting (flow rate estimate 10 L/s)		
3/3/14 1215	62.2	6.92	27.2	clear		
3/3/14 1224	62.4	6.97	27.0	clear		
3/3/14 1232	62.2	7.01	27.1	clear		
				Stop Airlifting		

Drilling	g sumn	nary re	port											Hole	e: KPBi	07		
			Da	ite started:	25/	/02/2014					Date con	npleted:	26/02/	2014				
			Drillir	ng Co./Rig:	Thompson /	Rig 18						Co-ord	dinates (GDA	94, Z54):	E	597907		
				Driller:	Josh Pech							Natur	al surface elev	vation. (mAH	D)	117		
Chip Tray	y Photos																	
11.	A LOSE	712	- Adda to the	-		1 1 2 2 2	1	Es	The Party			Sec. 1	No. Co				No. AN	
	S. E.S.	280-284		2%-242	ALC: N	100-002	-	160-162	108.07.93	120-122	1283	80-82	CAUS .	40-42	14.95.76 K	0-2		
	1		2000	242-244	Stat.	202-234	1 area	162-164	State of the	(22-124	-test	82-84	SET	42-44	Tim	z-4	4.1	
	C. A. A.	-78	Contraction of the second	244-246		204-206		184-166		124-126	C.R.S.	84-86		44-46	1	4-6		
	<u>0</u> .0	284-250		241-248	ACCESSION OF	206-2018		14-148		126-176	1	86-88	54-1	46-40		6-8	5	
	10 FE 20 - 4	2.90-191		248-230	REAL	212-210		168-170		128-130		88-90	SE	48 - 50	W. S.S.	8-10		
		192-294	ALC: NOT	10-254	- Alexandre	210-212		170-172	Cart I	130-152	C.S.C.R.	90-92	TAN	50-52	States 1	10-12	1.162	
15		274-276		254-256		212-119		172-174		152-139	and a	92-94	THE.	52-54	3.34	12-14		
	ALC: NO	296-278	Contraction of	256-256		214-216		174-176	1.10	154-136	M.S.	94-96	Singer 1	\$4-56	Strate	14-16		
	4.72	1.11-300	Constant and	250-160	Call Call	216-220	and the	176-178		171-128		96-78	-	56-58	S.F.F.	16-18		
	The second	300-502	Malaine and	260-262		200-172	- and a start	174-140		159-/40	the second	98-100	EC	58-60	A CAL	16-20	al a	
		302-304		262-264		m-IPI		150-182		140-142	202	100-102		60-22	CF.A.	20-22		
		304-306	Contraction of the second	264-246	A DE TRANSPORT	724-726		101-101		192-197		102-104	22	62-64	起了 ^{N2}	22-24		
	A REAL	306-300	2.35	266-265	Constant of the	226-228	1999 1997 - 1999	194-151	Contraction of	144-142		104-106	the sector	64-56	MACH.	24-26	2	
	13 mil	348-310	and the second s	260-290	A CARDINAL STREET	225-230		0-10-		146-145		100-108	Ching -	66-62		26-26	100	
	7	eoh		270-27	State of the second sec	230-272		170-172		19-152	1000	100-110	She at	68 - 70	1	28-30		
199	-			272-294	and and and	252-237		192-194		152 -152	Tes.	110-112		70 - 72	A STATE	30-31		
1-8			Contraction of the	274-276	A State	234-236		194-196		154-154	12:00	114-116		72 - 74	A CONTRACT	32-34		
				276-278	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	234-238		196-198		(56-15)	The start	u(-119	HAR IN	14-76	2.1.16	34-36	6.5	
1 at 1		1	3.5	74 - 280	- Incore	238-240		197-200		158-160	子主人	118-120		76-78		56-38		
	100			1	STARLE .	R TOP						110		78-80	-	58-40		
4				1 - C			k	PBi	07								2.0	
	de		14 All			1		24-26/2	114								1 The	
NOTES:																		

Drilling	summary report					Hole:	KPBi09		
~	Date started:	28/02/2014			Date completed:	1/03/2014			
			-						
	Drilling Co./Rig:	Thompson / Rig 18	Co-ordinates (GDA94, Z54): E	594439	GPS			
	Driller:	Josh Pech			N	6282471	coordinates/elevation taken with handheld GPS on 5/3/2014		
				Natural surface	e elevation. (mAHD)	109			
HSEC									
Incident des	cription		Action			Follow up			
Field obse	ervations								
EOH Airliftin	<u>g Summary</u>	1		1	1				
airline (m)	Post-test SWL (m)	Airlift yield (L/s)	Airlift period (hours)	EC (mS/cm)	рН	Temp. (ºC)	Other Observations		
100	27.38 (14/03/2014)	3.7 (average)	5.17	47.1	7.69	22.6	SWL below top of steel casing		
Notes: 2. SWL as meters below ground level									
Lithologic	al Summary (refer full lit	thological log for full	details)	Bit log		Mud log	• • • •		
Depth to	Interp. Log	Soil sandy red/brown	Description	Depth (m)	Type (inches)	Depth (m)	Description		
8	Qh	Clayey Sand: fine-med, red,	vellow and white	0-234	Diag bit 7 7/8 in		l		
10	Qh	Sandy Clay: beige and white	e/orange, med-coarse sand, soft		r		1		
12	Qh	Sand: coarse, red, clay fines	3		1				
14	T (Upper)	Silty Clay: pale grey			I		I		
16	T (Upper)	Clay: pale grey and red			1		I		
22	T (Upper)	Clayer Sand: med. nale nin	k and pale drev and white	Construction	IOG Matarial/grado	Diamotor/sizo	Burness ^[4]		
28	T (Upper)	Clay: pale grev	k and pare grey and write	Casing Material/grade Diameter/size Purpose ^{1/3}					
32	T (Upper)	Clayey Sand: med, white/be	ige and minor yellow	0 - 150	PVC Class 12	125 mm / 5 in	Blank casing		
40	T (Upper)	Clayey Sand: med-coarse, b	blue/grey, hard, with Clay: dark grey	150 - 156	PVC Class 12	125 mm / 5 in	Screen, machine slotted, 0.5 mm		
46	T (Lower)	Sand: coarse-very coarse, c	lean	156 - 186	PVC Class 12	125 mm / 5 in	Blank casing		
50	T (Lower)	Sand: coarse-very coarse, to	race lignite	186 - 192	PVC Class 12	125 mm / 5 in	Screen, machine slotted, 0.5 mm		
52	T (Lower)	Sand: coarse-very coarse a	nd Granules	192 - 224	PVC Class 12	125 mm / 5 in	Blank casing		
66	I (Lower)	Sand: med-very coarse, with	n Lignite	224 - 230	PVC Class 12	125 mm / 5 in	Screen, machine slotted, 0.5 mm		
70	T (Lower)	Sand: coarse-very coarse a	nd Granules, trace lignite, dirty	232 - 254		-	Collapsed hole		
94	T (Lower)	Sand: very coarse, with Gra	nules and Pebbles to 6mm, clean		1		1		
106	T (Lower)	Sand: coarse-very coarse, v	vith Granules, clean		l				
126	T (Lower)	Sand: coarse, minor clay fin	es, white/beige		<u> </u>		1		
150	T (Lower)	Sand: coarse-very coarse, n	hinor clay fines, white/beige	Seal					
152	T (Lower)	Clavey Sand: coarse, dark h	ay mes, white/beige	0 - 108	Cement arout		ISeal in horehole annulus		
162	T (Lower)	Sand: coarse-very coarse		108	Cement boot		Contain cement grout in overlying interval		
166	T (Lower)	Sand: coarse-very coarse, n	ninor clay fines, pale grey		1				
168	T (Lower)	Clayey Sand: med-very coa	rse, pale grey with minor white and orange		1				
182	T (Lower)	Clay: dark grey and blue/gre	ey		1				
184	I (Lower)	Sand: coarse-very coarse, n	lean	Gravel Fill:	•	·			
188	T (Lower)	Granules, with Sand: very coarse, d	parse, minor clay fines	108 - 254	Natural pack		Gravel not placed in borehole annulus		
190	T (Lower)	Sand: coarse-very coarse, v	vith Granules, clay fines		1				
200	T (Lower)	Sand: coarse-very coarse, v	vith Granules		l		1		
242	T (Lower)	Sand: coarse-very coarse, v		I					
244		Lignite, dark brown/black, so	oft with very hard chips, with Sand: coarse-very		1				
248	T (Lower)	Sand: coarse-very coarse a	nd Granules, with Clay: dark grev		<u> </u>	l	1		
254	Basement	Clay: dark grey		Stand Pipe:	•		I		
EOH	Basement	refusal (no sample return, si	0.68	STL		Stand Pipe			
	·		1m x 1m x .3m	Cement		Cement Block			
		I					•		
		l			I		1		
	t	t		Notes:	4 Purnose e o				
	r	1			Casing: Surface Casing, Pre-collar, Production Casing. Screened Production				
Notes: 1. Int	erpretted log: Qh (quarternary),	T (Tertairy), Basement			Seal: Cement Pad,	Well Seal, Cement in	Casing, Cement boot		
					Gravel Fill: Filter Pack, Backfill, Natural pack, Collapsed Hole				

Drilling sun	nmary report			Hole:	KPBi09		
	Date started:	28/02/2014		Date completed: 1/03/2014			
	Drilling Co./Rig: Driller:	Thompson / Rig 18 Josh Pech		Co-ordinates (GDA94, Z54): E N Natural surface elevation. (mAHD)	594439 6282471 109		
Airlift Developm	nent						
Tota	Date: Start Time: Finish Time al Time Airlifted (hr):	4/03/2014 4/3/14 1300 5/3/14 0900 5.17		Airlifted by: Post airlift SWL (m bgl): Lift Flow Rate (L/s): Volume Lifted (m3): Depth of Airline (m):	TDC (L Moore) 27.38 (14/03/2014) 3.7 68.9 100		
Time	EC (mS/cm)	рН	Temp (°C)	Comments			
4/3/14 1300				Start Airlifting (estimated flow rate 2 L/s), very dirty			
				flow rate gradually increased to about 4 L/s by the er	nd of the day		
4/3/14 1615	47.6	7.30	25.7	slightly cloudy			
4/3/14 1630	48.0	7.59	24.1	slightly cloudy			
4/3/14 1638	48.1	7.65	24.1	slightly cloudy			
4/3/14 1640				cease (estimated flow rate 4 L/s)			
5/3/14 0730				resume (estimated flow rate 5 L/s)			
5/3/14 0830	46.7	7.40	21.8	slightly cloudy			
5/3/14 0845	46.9	7.68	22.3	slightly cloudy			
5/3/14 0900	47.1	7.69	22.6	slightly cloudy (estimated flow rate 5 L/s)			
5/3/14 0900				Stop Airlifting. Lloyd suspects that poorer yield is due to shorter chlorine time and higher clay content in th sand. Perhaps not all three screens are active. If a proper production screen was used and developed by jetting it would achieve a high yielding well more in line with KPBi04 and KPBi07			

Drilling	summarv re	port			Hole:	KPBp04			
~	Date started:	3/03/2014			Date completed:	8/03/2014			
					(0144)				
	Drilling Co./Rig:	Thompson / Rig 18	Co-ordinates (GDA94, 254): E	601414	GPS coordinates/elevation taken with handheld GPS on			
					elevation. (mAHD)	125	7/3/2014. accuracy to 3m		
HSEC Incident dese	cription		Action			Follow up			
			<u></u> Г						
			1						
Field obse	ervations								
EOH Airliftin	g Summary								
					I				
Depth of airline (m)	Post-test SWL (m)	Airlift yield (L/s) Airlift period (hours)			рН	Temp. (ºC)	Other Observations		
~75	39.54 (15/03/14)	~15 (average)	32 (21 hours jetting, 11 hours airlifting)	45.3	7.4	24.9	swl m below top of steel casing		
Notes:	2. SWL as meters below	/ ground level							
Lithologic	al Summary (refer	full lithological log fo	or full details)	Bit log		Mud log			
Depth to	Interp. Log ^[1]	1	Description	Depth (m)	Type (inches)	Depth (m)	Description		
2	Qh	Topsoil and Calcrete		0 - 154	14" rock roller		<u> </u>		
14	Qh	Clayey sand: red		154-304	9" drag bit		1		
26	Qh	Sand clay: yellow and white	e, medium		! !		<u>.</u> 1		
3U 42	T (Upper)	Clayey sand: red and grey			1		I		
4Z	T (Upper)	Clay: grey and red, minor sa	and		t i		1		
40	T (Upper)	Clayey sand: medium to gra	anule, red	Construction		L	•		
38 70	T (Upper)	Sandy silt: red and light grea	ay, fine to medium grain	Construction	log Meteriel/mede	Diameter/size	Purpees ^[4]		
84	T (Upper)	CLAY: light grey, minor red	Depth setting Material/grade Diameter/size Purpose ** Casing						
88	T (Upper)	Clavov SAND modium woll	rounded grains. Light grow and light brown	0 144	PVC Class 18		Plank cacing first stage		
112	T (Upper)	CLAY: light grey/light green	134 5-135	PVC Class 18	150mm / 6"				
128	T (Upper)	SAND: Medium light brown	135 - 182	PVC Class 18	150mm / 6"	Blank casing - riser			
140	T (Upper)	Clavey SAND: medium more	182 - 188	Stainless steel	150mm / 6"	wirewound 0.5mm apeture			
158	T (Lower)	SAND: fine to medium, mod	188 - 202	PVC Class 18	150mm / 6"	Blank casing			
166	T (Lower)	SAND: poorly sorted fine to	202 - 208	Stainless steel	150mm / 6"	wirewound 0.5mm apeture			
180	T (Lower)	SAND: medium to coarse gr	208 - 248	PVC Class 18	150mm / 6"	Blank casing			
184	T (Lower)	SAND: Medium to course gr	248 - 254	Stainless steel	150mm / 6"	wirewound 0.5mm apeture			
198	T (Lower)	SAND: medium to pebble, p	254 - 278	PVC Class 18	150mm / 6"	Blank casing			
208	T (Lower)	SAND: fine to meadium grai	in, subrounded, grey, some pebble	278 - 284	Stainless steel	150mm / 6"	wirewound 0.5mm apeture		
216	T (Lower)	SAND: medium to coarse gr	rain, subrounded to subangular, grey	284 - 302	PVC Class 18	125mm / 5"	sump		
218	T (Lower)	clayey SAND: fine sand, min	nor clay, gery		I	I	1		
226	T (Lower)	SAND: Coarse, minor pebbl	le, grey	Seal					
228	T (Lower)	clayey SAND: fine to coarse	e grain sand, minor clay, medium to dark grey	0 - 145m	Cement grout	<u> </u>	Seal in borehole annulus		
238	T (Lower)	SAND: very coarse to pebbl	le, poorly sorted. Pebble up to 5mm		l		 		
256	T (Lower)	SAND: medium to coarse, n	noderately sorte, subrounded, medium to dark grey		1		1		
258	T (Lower)	clayey SAND: fine to mediu	m, minor lignite		I				
268	T (Lower)	SAND: medium to coarse gr	rain, subrounded, moderate sorting		t		I		
274	T (Lower)	CLAY: Lignite. Black		Gravel Fill		i	•		
286	T (Lower)	SAND: medium to coarse gi	rain, sub rounded to sub angular, medium grey, mod sort		.	1			
298	T (Lower)	SAND: fine to coarse grain,	poorly sorted, subrounded to subangular, grey	145 - 302	Natural pack	ļ	Gravel not placed in borehole annulus		
304	I (Lower)	SAND: medium to coarse gi	rain, moderate sort, minor clay.						
		<u> </u>		<u> </u>	<u> </u>	<u> </u>			
		! 		1	! 	·			
		 I		i	I				
	ſ	r	Stand Pipe:						
	r	ſ	0.6m	STL	1	Stand Pipe			
		1	1m x 1m x .3m	Cement	1	Cement Block			
		1		1	1	1			
		r I			т. Е	r I	I		
		·			·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
					·				
					4. Purpose e.g:				
					Casing: Surface Ca	asing, Pre-collar, Production Casing,	Screened Production		
Notes: 1. Interpretted log: Qh (quarternary), T (Tertairy - Upper and Lower)					Seal: Cement Pad,	Well Seal, Cement in Casing, Ceme	ent boot		
Grey Clay cuttings' recorded in some intervals are likely to be contamination from an overlying interval of unstable Clay					Gravel Fill: Filter Pack, Backfill, Natural pack, Collapsed Hole				

Drilling su	mmary repo	ort		Hole:	KPBp04
	Date started:	3/03/2014		Date completed: 8/03/2014	-
	Drilling Co./Rig: Driller:	Thompson / Rig 18 Josh Pech		Co-ordinates (GDA94, Z54): E N Natural surface elevation. (mAHD)	601414 6284357 125
Airlift Develop	nent				
	Date:	7-11/03/2014		Airlifted by	TDC (Lloyd M)
	Start Time:	7/3/14 1715		Post airlift SWL (m bgl):	39.554 15/03/20
	Finish Time	11/3/14 1230		Lift Flow Rate (L/s)	15
Tota	al Time Airlifted (hr):	32		Volume Lifted (m3):	1728
	-		•	Depth of Airline (m)	75
				1	
Time	EC (mS/cm)	рН	Temp (°C)	Comments	
10/3/14 0800	43.3	7.53	23.5	Start airlifting (flow rate visual estimate 10 L/s)	
10/3/14 1000	41.4	7.79	25.5	Some sands, murky, rotten egg smell	
10/3/14 1400	36.7	7.93	30	Some sands, murky, rotten egg smell	
10/3/14 1700	46.1	7.53	26.3	Some sands, murky, rotten egg smell	
11/3/14 0830	45.3	7.51	24	Some sands, murky, rotten egg smell	
11/3/14 0930	45.2	7.4	24.9	minor sands, sample clearing, rotten egg smell	
11/3/14 1100	45.3	7.41	24.9	clearing, very little sands.	

Drilling summary report							Hole	: KPBp04	
	Date started:	3/03/2014			Date co	ompleted:	8/03/2014		
	Drilling Co./Rig: T Driller: J	hompson / Rig 18 osh Pech				Co-ordinates	s (GDA94, Z54): I ace elevation. (mAHD	E 601414 N 6284357 D) 125	,
Chip Tray Photos									
	2-14 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4-	44-42 42-44 44-44 44-44 44-44 55-55 52-34 84-50 55-52 52-34 84-50 53-52 52-34 64-63 64-63 84-70 70-72 74-70	80-82 82-87 84-81	122-167 122-124 122-12	160-162 -164 166 168 170 172 -174 176 178 180 182 184 180 182 184 185 189 192 192 192 192 194 192 194 192 194 198 199 192 194 198 199 192 194 198 199 192 194 198 199 192 194 198 198 199 192 194 198 198 199 192 194 198 1	240-202 - 204 206 208 210 212 216 218 216 218 220 228 220 228 224 226 228 220 228 220 232 234 236 232 234 236 238 230 232	240-242 -244 246 248 259 252 254 256 258 259 252 254 256 258 250 252 264 268 269 262 264 268 269 262 264 268 269 252 264 268 259 252 259 259	280-282 -284 285 285 286 242 244 296 242 244 296 243 360 302 364 366 368 340	
NOTES:									

Appendix C Downhole Gamma Logs
Scal	e		Well name		
1:2	1:200		KPBi09		
	7		Surveys		
			Gamma		AUDIUG
			Location		Drill date
			Kielna	01/01/04	
			merpu		Drillers depth 0.000000
			Field		Inclination
			Violno		0.000000
			пера		Heading
			Company		
			Iron Road		
					Co-ord system
			Service company		X
6			Groundwater	Science	Y
			Operator	Start date	
B	eys	na	David Poulsen	1/03/2014 3:13:04 PM	Latitude
	Ž	m		Finish date	
š X	ິ	ß		1/03/2014 3:54:33 PM	Longitude
Run				Project name	Perm datum
Gamma	a 43m	nm-A031	-800015-13-04-01-03-2014	Iron Road	

lame	Unit	Offset(m) Filter Calibration		Model	Serial
amma	cps	1.000000 5 Raw		A031	S000
	0	Gamma cps	300	1m:200m -0.00	
				5.00	
				15.00	

Name	Unit	Offset(m)	Filter	Calibration	Model	Serial
Gamma	cps	1.000000	5	Raw	A031	S000

Scal	le		Well name		
1:2	1:200		KPBi07		
			Surveys		
			Gamma		AUDIUG
			Location		Drill date
			Kielna	01/01/04	
			merpu		Drillers depth 0.000000
			Field		Inclination
					0.000000
			киегра		Heading
			Company	0.000000	
			Iron Road		Elevation
					0.00000
					Co-ord system
			Service company		X
			Groundwater	· Science	V
			Operator	Start date	
Bi	sλε	13	David Poulsen	26/02/2014 5:44:43 PM	Latitude
	Ž	m		Finish date	
š X	Su	Ga		26/02/2014 6:33:45 PM	Longitude
Run				Project name	Perm datum
Gamma	a 43m	1m-A03	I-S00017-44-43-26-02-2014	Iron Road	

Name	Unit	Offset(m) Filte	r Calibration		Model	Serial
Gamma	cps	1.000000 5	Raw		A031	S000
	0		Gamma cps	300	1m:200m	
					-15.00	
					-10.00	
					-5.00	
	M. M.				0.00	

Name	Unit	Offset(m)	Filter	Calibration	Model	Serial
Gamma	cps	1.000000	5	Raw	A031	S000

Scal	le		Well name		
1:2	1:200		KPBi04		
			Surveys		
			Gamma		AUDIUG
			Location		Drill date
			Kielna	01/01/04	
			merpu		Drillers depth 0.000000
			Field		Inclination
					0.000000
			Кіегра		Heading
			Company	0.000000	
			Iron Road		Elevation
					0.00000
					Co-ord system
			Service company		X
+			Groundwater	Science	V
			Operator	Start date	
Bi	ελε	13	David Poulsen	23/02/2014 2:58:24 PM	Latitude
	Ž	m		Finish date	
š X	Su	Ga		23/02/2014 3:39:43 PM	Longitude
Run				Project name	Perm datum
Gamma	a 43m	m-A031	-800014-58-24-23-02-2014	Iron Road	

Name	Unit	Offset(m) Filter Calibration		Model	Serial
Gamma	cps	1.000000 5 Raw		A031	S000
	0	Gamma cps	300	1m:200m	
				-0.00	
				5.00	

Name	Unit	Offset(m)	Filter	Calibration	Model	Serial
Gamma	cps	1.000000	5	Raw	A031	8000

Scal	e	Well name		
1:2	200	KPBp04		
		Surveys		
		Gamma		AUDIUG
		Location		Drill date
		Kielna		01/01/04
		morpa		Drillers depth
				0.000000
		Field		
		Violno		0.000000
		Kieipa		Heading
		Company		
		Iron Road		Elevation
				0.000000
				CO-ord System
		Service company		X
4		Groundwater	· Science	
		Operator	Start date	T
BI	eys Ia	David Poulsen	7/03/2014 10:07:55 AM	Latitude
			Finish date	
š Y	Su Ga		7/03/2014 11:03:12 AM	Longitude
Run			Project name	Perm datum
Gamma	a 43mm-A	031-800010-07-55-07-03-2014	Iron Road	

Vame	Unit	Offset(m)	Filter	Calibration		Model	Serial
Gamma	cps	1.000000	5	Raw		A031	S000
	0			Gamma cps	300	1m:200m	
						-0.00	
						5.00	
						10.00	
						15.00	

Name	Unit	Offset(m)	Filter	Calibration	Model	Serial
Gamma	cps	1.000000	5	Raw	A031	S000

Appendix D Sieve Analysis

Drillhole:	KPBi04
Date:	22/02/2014
Sampled by	D Poulsen

Tares (weighe	d wet, grams
Sample Cup	7
1mm sieve	347
500um sieve	306
250um sieve	284
125um sieve	272
Total	1209

wiped away excess water with f	inger around inside bottom rim
--------------------------------	--------------------------------

		To	tal Sieve and Sample	Weight (gm)								Sample re	etained (g)			Pe	rcentage wei	ght		Ci	umulative sample passing (%)		
2m Interval Depth to (mbgl)	Sample weight (incl sample cup)	Clay/Lignite weight (incl sample cup)	Sample weight adjusted (incl sample cup)	125um	250um	500um	1mm	Sample gain or loss g	Total retained g	Passed through 125um	125um	250um	500um	1mm	Passed 125um	Retained 125um	Retained 250um	Retained 500um	Retained 1mm	125	250	500	1000
146	209	44	172	275	314	423	389	27	192	0	3	30	117	42	0	2	16	61	22	0	2	17	78
148	200	16	191	275	309	421	409	21	205	0	3	25	115	62	0	1	12	56	30	0	1	14	70
150	203	17	193	281	338	396	407	27	213	0	9	54	90	60	0	4	25	42	28	0	4	30	72
152	219	15	211	280	322	393	450	32	236	0	8	38	87	103	0	3	16	37	44	0	3	19	56
154	217	16	208	280	313	388	466	37	238	0	8	29	82	119	0	3	12	34	50	0	3	16	50
156	222	36	193	285	340	411	381	22	208	0	13	56	105	34	0	6	27	50	16	0	6	33	84
158	193	16	184	282	308	369	441	14	191	0	10	24	63	94	0	5	13	33	49	0	5	18	51
160	195	34	168	282	307	365	413	-3	158	3	10	23	59	66	2	6	14	37	41	2	8	22	59
162	195	7	195	276	305	414	435	33	221	0	4	21	108	88	0	2	10	49	40	0	2	11	60
164	198	7	198	267	286	356	486	-5	191	5	0	2	50	139	3	0	1	26	71	3	3	4	29
166	222	10	219	276	303	393	487	38	250	0	4	19	87	140	0	2	8	35	56	0	2	9	44
168	196	10	193	275	292	359	493	24	210	0	3	8	53	146	0	1	4	25	70	0	1	5	30

Drillhole:	KPBi04
Date:	22/02/2014
Sampled by	D Poulsen

Tares (weigh	ned wet, grams
Sample Cup	7
1mm sieve	347
500um sieve	306
250um sieve	284
125um sieve	272
Total	1209

wiped	away	excess	water	with	finger	around	inside	bottom rim	
-------	------	--------	-------	------	--------	--------	--------	------------	--

		-		Mr				1				Consulta or				0.					1.12			
		IC	otal Sieve and Sample	Weight (gm)								Sample re	etained (g)			Pe	rcentage weij	ght		Cumulative sample passing (%)				
2m Interval Depth to (mbgl)	Sample weight (incl sample cup)	Clay/Lignite weight (incl sample cup)	Sample weight adjusted (incl sample cup)	125um	250um	500um	1mm	Sample gain or loss g	Total retained g	Passed through 125um	125um	250um	500um	1mm	Passed 125um	Retained 125um	Retained 250um	Retained 500um	Retained 1mm	125	250	500	1000	
186	209	17	199	282	297	346	499	23	215	0	10	13	40	152	0	5	6	19	71	0	5	11	29	
188	204	10	201	282	299	352	498	28	222	0	10	15	46	151	0	5	7	21	68	0	5	11	32	
190	193	10	190	277	298	335	508	26	209	0	5	14	29	161	0	2	7	14	77	0	2	9	23	
192	191	9	189	278	345	430	384	46	228	0	6	61	124	37	0	3	27	54	16	0	3	29	84	
194	203	8	202	278	325	424	428	51	246	0	6	41	118	81	0	2	17	48	33	0	2	19	67	
196	200	9	198	290	358	402	377	27	218	0	18	74	96	30	0	8	34	44	14	0	8	42	86	
198	198	17	188	288	333	381	515	127	308	0	16	49	75	168	0	5	16	24	55	0	5	21	45	
200	193	14	186	283	315	377	438	25	204	0	11	31	71	91	0	5	15	35	45	0	5	21	55	

Drillhole:	KPBi04
Date:	22/02/2014
Sampled by	D Poulsen

Tares (weig	ghed wet, grams
Sample Cup	7
1mm sieve	347
500um sieve	306
250um sieve	284
125um sieve	272
Total	1209

All samples sieved for 3 mins fully immersed in water All samples are weighed wet and drained wiped away excess water with finger around inside bottom rim

		To	tal Sieve and Sample	Weight (gm)								Sample re	etained (g)			Pe	rcentage weig	ght		Cu	umulative sam	ple passing (9	6)
2m Interval Depth to (mbgl)	Sample weight (incl sample cup)	Clay/Lignite weight (incl sample cup)	Sample weight adjusted (incl sample cup)	125um	250um	500um	1mm	Sample gain or loss g	Total retained g	Passed through 125um	125um	250um	500um	1mm	Passed 125um	Retained 125um	Retained 250um	Retained 500um	Retained 1mm	125	250	500	1000
204	222	8	221	291	342	413	406	29	243	0	19	58	107	59	0	8	24	44	24	0	8	32	76
206	198	16	189	289	328	391	398	15	197	0	17	44	85	51	0	9	22	43	26	0	9	31	74
208	196	9	194	278	301	383	475	41	228	0	6	17	77	128	0	3	7	34	56	0	3	10	44

Drillhole:	KPBi04
Date:	22/02/2014
Sampled by	D Poulsen

Tares (weigh	ed wet, grams
Sample Cup	7
1mm sieve	347
500um sieve	306
250um sieve	284
125um sieve	272
Total	1209

wiped	away	excess	water	with	finger	around	inside	bottom rim
-------	------	--------	-------	------	--------	--------	--------	------------

		Ta	otal Sieve and Sample	Weight (gm)								Sample re	etained (g)			Pe	rcentage wei	ght		Ci	imulative sam	ple passing (%)
2m Interval Depth to (mbgl)	Sample weight (incl sample cup)	Clay/Lignite weight (incl sample cup)	Sample weight adjusted (incl sample cup)	125um	250um	500um	1mm	Sample gain or loss g	Total retained g	Passed through 125um	125um	250um	500um	1mm	Passed 125um	Retained 125um	Retained 250um	Retained 500um	Retained 1mm	125	250	500	1000
216	216	11	212	290	361	401	378	16	221	0	18	77	95	31	0	8	35	43	14	0	8	43	86
218	211	10	208	290	361	397	388	26	227	0	18	77	91	41	0	8	34	40	18	0	8	42	82
220	209	15	201	292	356	388	384	17	211	0	20	72	82	37	0	9	34	39	18	0	9	44	82
222	218	8	217	276	286	315	565	23	233	0	4	2	9	218	0	2	1	4	94	0	2	3	6
224	221	9	219	277	296	337	540	29	241	0	5	12	31	193	0	2	5	13	80	0	2	7	20
226	210	11	206	280	304	324	519	19	218	0	8	20	18	172	0	4	9	8	79	0	4	13	21
228	217	23	201	277	292	326	526	18	212	0	5	8	20	179	0	2	4	9	84	0	2	6	16
230	228	7	228	284	355	380	457	46	267	0	12	71	74	110	0	4	27	28	41	0	4	31	59
232	204	8	203	292	303	326	484	0	196	0	20	19	20	137	0	10	10	10	70	0	10	20	30
234	209	10	206	286	313	374	472	37	236	0	14	29	68	125	0	6	12	29	53	0	6	18	47
236	205	15	197	282	304	338	510	35	225	0	10	20	32	163	0	4	9	14	72	0	4	13	28
238	211	13	205	277	290	320	538	18	216	0	5	6	14	191	0	2	3	6	88	0	2	5	12

Tares (weigh	ied wet, grams
Sample Cup	7
1mm sieve	347
500um sieve	306
250um sieve	284
125um sieve	272
Total	1209

All samples sieved for 3 mins fully immersed in water All samples are weighed wet and drained wiped away excess water with finger around inside bottom rim

		To	tal Sieve and Sample	Weight (gm)								Sample re	etained (g)			Pe	rcentage weig	ght		Cu	umulative sam	ple passing (9	6)
2m Interval Depth to (mbgl)	Sample weight (incl sample cup)	Clay/Lignite weight (incl sample cup)	Sample weight adjusted (incl sample cup)	125um	250um	500um	1mm	Sample gain or loss g	Total retained g	Passed through 125um	125um	250um	500um	1mm	Passed 125um	Retained 125um	Retained 250um	Retained 500um	Retained 1mm	125	250	500	1000
246	188	19	176	277	319	446	381	45	214	0	5	35	140	34	0	2	16	65	16	0	2	19	84
248	200	17	190	279	318	449	390	44	227	0	7	34	143	43	0	3	15	63	19	0	3	18	81
250	208	18	197	280	316	461	396	54	244	0	8	32	155	49	0	3	13	64	20	0	3	16	80

Drillhole:	KPBi04
Date:	22/02/2014
Sampled by	D Poulsen

Tares (weig	hed wet, gram
Sample Cup	7
1mm sieve	347
500um sieve	306
250um sieve	284
125um sieve	272
Total	1209

wiped	away	excess	water	with	finger	around	inside	bottom rim
-------	------	--------	-------	------	--------	--------	--------	------------

		To	tal Sieve and Sample	Weight (gm)								Sample re	tained (g)			Pe	rcentage weig	ht		Cumulative sample passing (%)			
2m Interval Depth to (mbgl)	Sample weight (incl sample cup)	Clay/Lignite weight (incl sample cup)	Sample weight adjusted (incl sample cup)	125um	250um	500um	1mm	Sample gain or loss g	Total retained g	Passed through 125um	125um	250um	500um	1mm	Passed 125um	Retained 125um	Retained 250um	Retained 500um	Retained 1mm	125	250	500	1000
282	263	9	261	278	294	372	520	1	255	0	6	10	66	173	0	2	4	26	68	0	2	6	32
284	204	15	196	279	289	329	495	-6	183	6	7	5	23	148	3	4	3	12	78	3	7	10	22
286	232	14	225	281	297	337	528	16	234	0	9	13	31	181	0	4	6	13	77	0	4	9	23
288	232	12	227	277	288	334	553	23	243	0	5	4	28	206	0	2	2	12	85	0	2	4	15
290	216	22	201	280	292	336	511	16	210	0	8	8	30	164	0	4	4	14	78	0	4	8	22
292	226	12	221	274	288	329	557	25	239	0	2	4	23	210	0	1	2	10	88	0	1	3	12
294	222	28	201	279	295	344	497	12	206	0	7	11	38	150	0	3	5	18	73	0	3	9	27
296	219	23	203	281	296	347	500	19	215	0	9	12	41	153	0	4	6	19	71	0	4	10	29
300	225	13	219	280	292	355	524	30	242	0	8	8	49	177	0	3	3	20	73	0	3	7	27
302	215	10	212	278	281	331	532	8	213	0	6	-3	25	185	0	3	-1	12	87	0	3	1	13

Appendix E Pumping Test Data

Iron Road CEIP Constant Rate Test and Recovery Data

Site	KPBi07
Reference Point (RP)	mTOC
Date	5/03/2014
Start time	9:40:00 AM
Finish time	17:40:00 PM
Discharge rate (L/s)	5
Flow rate (m3/day)	432
SWL (m bRP)	35.4

Г

Time (mins)	numping	Water level	Drawdown	Recovery	Ratio
	(t - days)	(m bRP)	(S)	(t')	t/t'
0	0.0000	35.40	0.00		
1	0.0007				
2	0.0014				
3	0.0021				
4	0.0028				
5	0.0035	44.60	9.20		
6	0.0042	45.06	9.66		
7	0.0049	45.29	9.89		
8	0.0056	45.37	9.97		
9	0.0063	45.46	10.06		
10	0.0069	45.51	10.11		
12	0.0083	45.73	10.33		
14	0.0097	45.85	10.45		
16	0.0111	45.96	10.56		
18	0.0125	40.05	10.65		
20	0.0159	46.07	10.07		
22	0.0155	40.10	10.70		
24	0.0107	46.14	10.74		
28	0.0101	46.25	10.85		
30	0.0208	46.28	10.88		
35	0.0243	46.36	10.96		
40	0.0278	46.42	11.02		
45	0.0313	46.50	11.10		
50	0.0347	46.56	11.16		
55	0.0382	46.60	11.20		
60	0.0417	46.64	11.24		
70	0.0486	46.71	11.31		
80	0.0556	46.76	11.36		
90	0.0625	46.78	11.38		
100	0.0694	46.81	11.41		
120	0.0833	46.88	11.48		
140	0.0972	46.93	11.53		
160	0.1111	46.97	11.57		
180	0.1250	47.07	11.67		
200	0.1369	47.11	11.71		
200	0.1730	47.13	11.73		
350	0.2003	47.17	11.77		
400	0.2431	47.21	11 87		
450	0.3125	47.29	11.89		
480	0.3333	47.32	11.92		
481	0.3340	37.36	1.96	1	481.00
482	0.3347	36.10	0.70	2	241.00
483	0.3354	35.92	0.52	3	161.00
484	0.3361	36.10	0.70	4	121.00
485	0.3368	36.12	0.72	5	97.00
486	0.3375	36.12	0.72	6	81.00
487	0.3382	36.12	0.72	7	69.57
488	0.3389	36.12	0.72	8	61.00
489	0.3396	36.10	0.70	9	54.33
490	0.3403	36.07	0.67	10	49.00
492	0.3417	36.02	0.62	12	41.00
494	0.3431	35.99	0.59	14	35.29
496	0.3444	35.97	0.57	16	31.00
498	0.3458	35.93	0.53	18	27.67
500	0.3472	35.90	0.50	∠U 25	25.00
505	0.5507	33.83 35.80	0.45	20 30	20.20
515	0.3576	35.77	0.40	35	14 71
515	0.3370	55.11	0.07		17./1

Pumped well					
Straight Line					
Δs	0.75				
T (m²/d)	105				
Recovery					
Δs	0.6				
T (m²/d)	132				

Iron Road CEIP Constant Rate Test and Recovery Data

Site	KPBi09		
Reference Point (RP)	mTOC	_	
Date	7/03/2014 - 8/3/2014		
Start time	8:38:00 AM		
Finish time	12:39:18 AM		
Discharge rate (L/s)	3		
Flow rate (m3/day)	259.2		
SWL (m bRP)	70.679	*(Depth of downhole logg	

	Time since	Water level	Drawdown	Recovery	Ratio
Time (mins)	pumping	(m bRP)*	(5)	(t')	t/t'
	(t - days)		N -7		
0	0.0000	70.679	0.00		
1	0.0007	69.353	1.33		
2	0.0014	61.109	9.57		
3	0.0021	56.157	14.52		
4	0.0028	53.215	17.46		
5	0.0035	52.632	18.05		
6	0.0042	50.574	20.11		
7	0.0049	50.179	20.50		
8	0.0056	47.812	22.87		
9	0.0062	48.204	22.48		
10	0.0069	47.989	22.69		
12	0.0083	46.741	23.94		
14	0.0097	45.012	25.67		
16	0.0111	43.846	26.83		
18	0.0125	43.464	27.22		
20	0.0139	43.469	27.21		
22	0.0155	43.946	20.75		
24	0.0187	45.467	27.19		
20	0.0181	40.453	28.87		
30	0.0208	42.029	28.65		
35	0.0243	41.273	29.41		
40	0.0278	42.207	28.47		
45	0.0313	42.008	28.67		
50	0.0347	39.766	30.91		
55	0.0382	41.145	29.53		
60	0.0417	41.607	29.07		
70	0.0486	41.16	29.52		
80	0.0556	40.85	29.83		
90	0.0625	38.005	32.67		
100	0.0694	39.033	31.65		
120	0.0833	39.201	31.48		
140	0.0972	38.399	32.28		
160	0.1111	39.065	31.61		
180	0.1250	37.334	33.35		
200	0.1389	37.046	33.03		
250	0.1750	37.954	32.75		
350	0.2083	33,834	36.85		
400	0 2778	34 881	35.80		
450	0.3125	37.897	32.78		
480	0.3333	39.783	30.90	ť	t/ť
481	0.3340	49.992	20.69	0.0007	481
482	0.3347	70.099	0.58	0.0014	241
483	0.3354	69.976	0.70	0.0021	161
484	0.3361	70.008	0.67	0.0028	121
485	0.3368	70.051	0.63	0.0035	97
486	0.3375	70.062	0.62	0.0042	81
487	0.3382	68.331	2.35	0.0049	69.5714
488	0.3389	69.473	1.21	0.0056	61
489	0.3396	69.461	1.22	0.0062	54.3333
490	0.3403	69.232	1.45	0.0069	49
492	0.3417	70.094	0.59	0.0065	25 2057
454	0.3431	70.141	0.57	0.0097	33.2037
498	0.3458	70,148	0.53	0.0125	27.6667
500	0.3472	70.167	0.51	0.0139	25
502	0.3486	70.172	0.51	0.0153	22.8182
504	0.3500	70.184	0.50	0.0167	21
506	0.3514	70.189	0.49	0.0181	19.4615
508	0.3528	70.203	0.48	0.0194	18.1429
510	0.3542	70.222	0.46	0.0208	17
515	0.3576	70.242	0.44	0.0243	14.7143
520	0.3611	70.26	0.42	0.0278	13
525	0.3646	70.278	0.40	0.0313	11.6667
535	0.3715	70.321	0.36	0.0382	9.72727
540	0.3750	/0.331	0.35	0.0417	9
550	0.3819	70.35	0.33	0.0486	7.85/14
500	0.2050	70.382	0.30	0.0556	6 33333
580	0.3958	70.415	0.26	0.0625	5.8
600	0.4167	70.432	0.25	0.0833	5.0
620	0.4306	70.434	0.25	0.0972	4.42857
640	0.4444	70.436	0.24	0.1111	4
660	0.4583	70.451	0.23	0.1250	3.66667
680	0.4722	70.458	0.22	0.1389	3.4
730	0.5069	70.484	0.20	0.1736	2.92
780	0.5417	70.499	0.18	0.2083	2.6
830	0.5764	70.506	0.17	0.2431	2.37143
880	0.6111	70.511	0.17	0.2778	2.2
930	0.6458	70.513	0.17	0.3125	2.06667
960	0.6667	70.525	0.15	0.3333	2
961	0.6674	70.518	0.16	0.3340	1.99792
962	0.6681	/0.529	U.15	0.3347	1.99585

Pumped well				
Straight Line				
Δs	5			
T (m²/d)	9.49			
Recovery				
Δs	0.4			
T (m²/d)	119			

Pumped Well	KPBp04	Obs 1	KPBi04
Screen From	145	Screen From	144
Screen To	302	Screen To	288
Aquifer thickness	160	Aquifer thickness	160
Salinity	45.3	Salinity	41.6
Density	1	Density	1
Flow rate	2592	Radius	50

\$ 0.00 0.13 0.13 0.23

0.25 0.27 0.28 0.29 0.33 0.35 0.36 0.38 0.40

0.40 0.41 0.43 0.46 0.48 0.45 0.45 0.41

0.40 0.39 0.38 0.38 0.36

0.33

0.32 0.29 0.27 0.23

0.22 0.19 0.16 0.16 0.15

0.13 0.13

1	Deverse		D04)	1	01	- 14/-11 (//DD:04)
	Pump		вроч)			s well (KPBI04)
	t	t/t	5		t	t/t
	0.00000		0.00		0.00000	
	0.00069		3.74		0.00347	
	0.00139		4.81		0.00694	
	0.00208		5.00		0.01458	
	0.00278		4.98		0.01944	
	0.00347		4.99		0.02500	
	0.00417		5.01		0.02917	
	0.00486		5.06		0.03750	
	0.00556		5.07		0.05486	
	0.00625		5.08		0.06944	
	0.00694		5.08		0.08333	
	0.00833		5.00		0.11111	
	0.00033		5.11		0.12500	
	0.00372		5.14		0.12300	
	0.01111		5.10		0.13669	
	0.01250		5.18		0.17361	
	0.01389		5.20		0.20833	
	0.01528		5.21		0.25000	
	0.01667		5.22		0.25139	181
	0.01806		5.23	[0.25208	121
	0.01944		5.26		0.25278	91
	0.02083		5.28		0.25347	73
	0.02431		5.29		0.25417	61
	0.02778		5.31		0.25486	52
	0.03125		5.33		0.25694	37
	0.03472		5.36		0.26181	22
	0.03819		5.39		0.26597	17
	0.04167		5.41		0.27431	11
	0.04861		5.42		0.27778	10
	0.05556		5.44		0.29861	6
	0.06250		5.46		0.31250	5
	0.06944		5.48		0 33333	4
	0.08333		5.51		0.35417	3
	0.09722		5.56		0.37500	3
	0 11111		5 59		0 39583	3
	0.12500		5.61		0.41667	3
	0.13889		5.62		0.43750	2
	0 17361		5.71		0.13750	-
	0.20833		5.71			
	0.25000		5.80			
	0.25069	361	1 15			
	0.25139	181	1.15			
	0.25202	121	1.01			
	0.25270	91	0.55			
	0 25347	73	0.88			
	0 25417	61	0.04			
	0.25486	52	0.00			
	0.25556	16	0.75			
	0.255550	40	0.75			
	0.25694	37	0.75			
	0.25034	25	0.71			
	0.20042	20	0.00			
	0.20313	17	0.04	[
	0.20320	12	0.02	[
	0.27003	10	0.50	[
	0.2/039	0 TO	0.52	[
	0.20472	o F	0.47	[
	0.30208	D F	0.39	[
	0.31230	5	0.57	[
	0.25333	4	0.29	[
	0.3541/	3	0.25	[
	0.3/500	3	0.23			
	0.39583	3	0.21	[
	0.41667	3	0.19			

0.43750

2

0.18

	Pumped well	Obs1
	KPBp04	KPBi04
Curve Fitting	-	
Curve Type		
Match Point		
s		0.066
t		0.00031
Delayed yield t		
r/L		
r/D		
D		#DIV/0!
Thickness of Confining Layer		100
Time to boundary		0.11
т		3125
s		1.5E-03
Sy		0.0E+00
L		#DIV/0!
с		#DIV/0!
κ'		#DIV/0!
Kh		20
Kv		0.0000
Distance to Boundary		706
Straight Line		
٨٩	0.42	0 180
t.	0.42	0.0009
to		0.0005
Time to boundary 1		0.11
	1120	2625
c	1129	2055
Distance to Roundany		2.1E-05
Distance to boundary		222
Recovery		
Δs	0.42	0.220
т	1129	2156

Appendix F Water Quality Data

			KPBp04	KPBi07	KPBi09
Analyte grouping/Analyte		Sample dat	16/03/2014	5/03/2014	7/03/2014
	Units	LOR			
EA005: pH					
pH Value	pH Unit	0.01	6.55	6.62	6.57
Total Dissolved Solids (Calc.)	mg/L	1	29200	41300	33900
Suspended Solids (SS)	mg/L	5	181	194	279
Hydroxide Alkalinity as CaCO3	mg/L	1	<1	<1	<1
Carbonate Alkalinity as CaCO3	mg/L	1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	mg/L	1	193	236	225
Total Alkalinity as CaCO3	mg/L	1	193	236	225
	mg/L	0.05	6.88	5.56	5.07
Sulfate as SO4 - Turbidimetric	mg/L	1	2350	3080	2630
Chloride	mg/L	1	16000	26500	19500
Calcium	mg/L	1	585	1280	661
Codium	mg/L	1	902	1300	0520
Potaccium	mg/L	1	8170 191	12800	9550
Aluminium	mg/L	0.01	101	233	200
Arconic	mg/L	0.01	<0.01	<0.10	<0.01
Beryllium	mg/L	0.001	<0.001	<0.010	<0.001
Barium	mg/L	0.001	0.04	0.010	0.001
Cadmium	mg/l	0.001	<0.001	<0.0010	<0.001
Chromium	mg/L	0.001	0.02	0.01	0.017
Cobalt	mg/L	0.001	< 0.001	< 0.010	0.001
Copper	mg/L	0.001	0.004	0.017	0.01
Lead	mg/L	0.001	< 0.001	<0.010	< 0.001
Manganese	mg/L	0.001	1.81	2.77	1.98
Molybdenum	mg/L	0.001	0.001	< 0.010	0.002
Selenium	mg/L	0.01	< 0.01	<0.10	< 0.01
Uranium	mg/L	0.001	< 0.001	<0.010	< 0.001
Vanadium	mg/L	0.01	< 0.01	<0.10	< 0.01
Zinc	mg/L	0.005	0.008	0.054	0.007
Boron	mg/L	0.05	1.49	2.4	1.28
Iron	mg/L	0.05	3.62	3.56	0.92
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001
Ammonia as N	mg/L	0.01	0.44	0.94	0.7
Nitrite as N	mg/L	0.01	0.01	<0.01	<0.01
Nitrate as N	mg/L	0.01	<0.01	<0.01	<0.01
Nitrite + Nitrate as N	mg/L	0.01	0.01	<0.01	<0.01
Total Kjeldahl Nitrogen as N	mg/L	0.1	1.1	2.4	1.4
Total Nitrogen as N	mg/L	0.1	1.1	2.4	1.4
Total Phosphorus as P	mg/L	0.01	0.13	0.06	<0.01
Reactive Phosphorus as P	mg/L	0.01	0.1	<0.01	<0.01
D					
Benzene	µg/L	1	<1	<1	<1
Ethylhonzono	µg/L	2	<2	<2	<2
Ethylbenzene	µg/L	2	<2	<2	<2
ortho-Yylene	μg/L ug/l	2	<2	<2	<2
	μg/L μg/I	2	<2	<2	<2
Sum of BTEX	μσ/I	1	<1	<1	<1
Nanhthalene	μσ/I	5	<5	<5	<5
C6 - C9 Eraction	110/l	20	<20	<20	<20
C10 - C14 Fraction	ug/I	50	<50	<50	<50
C15 - C28 Fraction	r-6/ - ug/l	100	<100	<100	<100
C29 - C36 Fraction	μg/L	50	<50	<50	<50
C10 - C36 Fraction (sum)	μg/L	50	<50	<50	<50
C6 - C10 Fraction	μg/L	20	<20	<20	<20
C6 - C10 Fraction minus BTEX (F1)	. <i>σ.</i> μg/L	20	<20	<20	<20
>C10 - C16 Fraction	. <i>σ.</i> μg/L	100	<100	<100	<100
>C16 - C34 Fraction	μg/L	100	<100	<100	<100
>C34 - C40 Fraction	μg/L	100	<100	<100	<100
>C10 - C40 Fraction (sum)	μg/L	100	<100	<100	<100
>C10 - C16 Fraction minus Naphthalene (F2)	µg/L	100	<100	<100	<100

C	CERTI	FICATE OF ANALYSIS	
Work Order	[±] EM1402441	Page	: 1 of 6
Client	: GROUNDWATER SCIENCE	Laboratory	: Environmental Division Melbourne
Contact	: MR BEN JEUKEN	Contact	: Kieren Burns
Address	MINES & ENERGY HOUSE	Address	: 4 Westall Rd Springvale VIC Australia 3171
	290 GLEN OSMOND ROAD		
	FULLARTON SOUTH AUSTRALIA 5063		
E-mail	: ben.jeuken@groundwaterscience.com.au	E-mail	: kieren.burns@alsglobal.com
Telephone	: +61 0448 040 733	Telephone	: 61 8 8359 0890
Facsimile	: +61 08 8121 1839	Facsimile	: 61 8 8259 0875
Project	: Kielpa Water Supply	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 18-MAR-2014
Sampler	: SM	Issue Date	: 26-MAR-2014
Site	:		
		No. of samples received	: 3
Quote number	:	No. of samples analysed	: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Address 4 Westall Rd Springvale VIC Australia 3171 | PHONE +61-3-8549 9600 | Facsimile +61-3-8549 9601 Environmental Division Melbourne ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

.

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- EG020F: Sample EM1402441-002 has been diluted prior to analysis and LORs have been raised accordingly.
- EP080: Particular sample (EM-1402441-002,003) show poor surrogates recovery due to the matrix interferrence. Confirmed by QC sample.
- Insufficient time was provided to conduct the analysis of alkalinity and mercury within the recommended holding times. ALS requires at least 50% of the recommended analytical holding time upon receipt.
- Ionic Balance out of acceptable limits for sample #2, #3 due to analytes not quantified in this report.
- lonic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- Samples were filtered through a 0.45um filter prior to the dissolved metals analysis.

	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically compliance with procedures specified in 21 C	signed by the authorized signatories indic FR Part 11.	ated below. Electronic signing has been carried out in
AIA	ISO/IEC 17025.	Signatories	Position	Accreditation Category
		Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics
		Herman Lin	Laboratory Manager	Melbourne Inorganics
ORLD RECOGNISED		Nancy Wang	Senior Semivolatile Instrument Chemist	Melbourne Organics
		Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		KPBp04	KPBi07	KPBi09	 	
	CI	lient samplii	ng date / time	16-MAR-2014 15:00	05-MAR-2014 15:00	07-MAR-2014 15:00	
Compound		I OR	l Init	EM1402441-001	EM1402441-002	EM1402441-003	
	CAS Number	LOIT	Cint				
pH Value		0.01	pH Unit	6.55	6.62	6.57	
EA016: Non Marine - Estimated TDS Sa	linity						
Total Dissolved Solids (Calc.)		1	mg/L	29200	41300	33900	
EA025: Suspended Solids							
Suspended Solids (SS)		5	mg/L	181	194	279	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	193	236	225	
Total Alkalinity as CaCO3		1	mg/L	193	236	225	
ED040F: Dissolved Major Anions							
Silicon	7440-21-3	0.05	mg/L	6.88	5.56	5.07	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	2350	3080	2630	
ED045G: Chloride Discrete analyser							
Chloride	16887-00-6	1	mg/L	16000	26500	19500	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	585	842	661	
Magnesium	7439-95-4	1	mg/L	962	1380	1130	
Sodium	7440-23-5	1	mg/L	8170	12800	9530	
Potassium	7440-09-7	1	mg/L	181	255	200	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.10	<0.01	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.010	<0.001	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.010	<0.001	
Barium	7440-39-3	0.001	mg/L	0.040	0.044	0.030	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0010	<0.0001	
Chromium	7440-47-3	0.001	mg/L	0.020	0.010	0.017	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.010	0.001	
Copper	7440-50-8	0.001	mg/L	0.004	0.017	0.010	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.010	<0.001	
Makada karana	7439-96-5	0.001	mg/L	1.81	2.77	1.98	
woybaenum	7439-98-7	0.001	mg/L	0.001	<0.010	0.002	

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KPBp04	KPBi07	KPBi09	
	CI	ient sampli	ng date / time	16-MAR-2014 15:00	05-MAR-2014 15:00	07-MAR-2014 15:00	
Compound	CAS Number	I OR	l Init	EM1402441-001	EM1402441-002	EM1402441-003	
EG020E: Dissolved Metals by ICB MS_Cor	CAS Number	2011	Office				
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.10	<0.01	
Uranium	7440-61-1	0.001	mg/L	<0.001	<0.010	<0.001	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.10	<0.01	
Zinc	7440-66-6	0.005	mg/L	0.008	0.054	0.007	
Boron	7440-42-8	0.05	mg/L	1.49	2.40	1.28	
Iron	7439-89-6	0.05	mg/L	3.62	3.56	0.92	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
EK055G: Ammonia as N by Discrete Analy	/ser						
Ammonia as N	7664-41-7	0.01	mg/L	0.44	0.94	0.70	
EK057G: Nitrite as N by Discrete Analyse	r						
Nitrite as N		0.01	mg/L	0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Analyse	er						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx) b	y Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.01	<0.01	<0.01	
EK061G: Total Kjeldahl Nitrogen By Discre	ete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.1	2.4	1.4	
EK062G: Total Nitrogen as N (TKN + NOx)	by Discrete Ar	nalyser					
[^] Total Nitrogen as N		0.1	mg/L	1.1	2.4	1.4	
EK067G: Total Phosphorus as P by Discre	ete Analyser						
Total Phosphorus as P		0.01	mg/L	0.13	0.06	<0.01	
EK071G: Reactive Phosphorus as P by dis	screte analyser						
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.10	<0.01	<0.01	
EN055: Ionic Balance		0.01		=0.4	242		
		0.01	meq/L	504	816	609 E46	
I otal Cations		0.01	meq/L	400	6.36	5 53	
	 فيستري من الألالية ال	0.01	/0	5.07	0.00	0.00	
EP080/071: Total Petroleum Hydrocarbons		20	ug/l	<20	<20	<20	
C10 - C14 Fraction		50	µ9'⊏ ug/l	<50	<50	<50	
C15 - C28 Fraction		100	µg/L	<100	<100	<100	
C29 - C36 Fraction		50	ua/L	<50	<50	<50	
			P.9				

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KPBp04	KPBi07	KPBi09	
	Cli	ient sampli	ng date / time	16-MAR-2014 15:00	05-MAR-2014 15:00	07-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	EM1402441-001	EM1402441-002	EM1402441-003	
EP080/071: Total Petroleum Hydrocarb	oons - Continued						
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	<50	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20	
(F1)							
>C10 - C16 Fraction	>C10_C16	100	µg/L	<100	<100	<100	
>C16 - C34 Fraction		100	µg/L	<100	<100	<100	
>C34 - C40 Fraction		100	µg/L	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	<100	
>C10 - C16 Fraction minus Naphthalene 1		100	µg/L	<100	<100	<100	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	<1	
Toluene	108-88-3	2	µg/L	<2	<2	<2	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	
1 Total Xylenes	1330-20-7	2	µg/L	<2	<2	<2	
[^] Sum of BTEX		1	µg/L	<1	<1	<1	
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	72.3	65.8	65.9	
Toluene-D8	2037-26-5	0.1	%	85.1	80.5	83.8	
4-Bromofluorobenzene	460-00-4	0.1	%	82.0	76.7	76.7	

Page	: 6 of 6
Work Order	: EM1402441
Client	: GROUNDWATER SCIENCE
Project	: Kielpa Water Supply

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	70	132
Toluene-D8	2037-26-5	69	125
4-Bromofluorobenzene	460-00-4	61	129

Appendix G Drawdov

Drawdown Time Series

Т	ime						Drawdown (m)				
Days	Years	KPB01	КРВО2	КРВОЗ	KPB05	KPB04	КРВО6	KPB07	KPB08	KPB09	KPB10	Lock Township Obs bore
281.2	0.8	24.3	29.5	32.2	34.4	34.1	31.9	30.9	31.9	31.8	30.7	0.0
618.7	1.7	28.5	35.0	38.5	41.2	40.7	38.6	37.3	38.1	37.2	35.9	0.0
1023.6	2.8	30.7	37.8	41.7	44.6	44.0	42.0	40.6	41.2	40.0	38.6	0.0
1509.6	4.1	32.4	39.9	44.0	46.8	46.2	44.3	43.0	43.6	42.1	40.8	0.0
2092.7	5.7	34.2	41.9	46.1	49.1	48.5	46.6	45.1	45.6	44.0	42.7	0.0
2792.5	7.7	36.0	44.1	48.8	52.0	51.3	49.4	47.8	48.1	46.2	44.8	0.0
3632.2	10.0	38.2	46.9	52.1	55.6	54.8	53.0	51.2	51.3	48.9	47.4	0.0
4639.8	12.7	40.8	50.4	56.4	60.3	59.4	57.7	55.6	55.4	52.3	50.8	0.0
5849.0	16.0	44.2	54.8	61.6	65.9	64.9	63.4	61.0	60.5	56.7	55.1	0.0
7300.0	20.0	48.2	59.8	67.3	72.0	70.9	69.6	67.0	66.2	61.6	60.0	0.0
7581.2	20.8	27.7	35.4	41.1	44.1	43.1	44.1	42.2	40.2	34.9	34.2	0.0
7918.7	21.7	25.5	32.6	37.9	40.6	39.8	40.8	39.0	37.1	32.1	31.5	0.0
8323.6	22.8	24.3	31.1	36.2	38.8	38.0	39.0	37.4	35.4	30.6	30.1	0.0
8809.6	24.1	23.4	29.8	34.6	37.1	36.3	37.3	35.8	33.8	29.2	28.8	0.0
9392.7	25.7	22.4	28.3	32.9	35.3	34.5	35.6	34.1	32.2	27.8	27.5	0.0
10092.5	27.7	21.3	26.9	31.1	33.4	32.7	33.7	32.3	30.5	26.3	26.1	0.0
10932.2	30.0	20.3	25.4	29.3	31.4	30.7	31.7	30.4	28.7	24.8	24.7	0.0
11939.8	32.7	19.2	23.8	27.4	29.4	28.7	29.7	28.5	26.8	23.3	23.2	0.0
13149.0	36.0	18.0	22.2	25.5	27.3	26.7	27.6	26.5	25.0	21.8	21.7	0.0
14600.0	40.0	16.7	20.5	23.6	25.2	24.7	25.4	24.5	23.1	. 20.1	. 20.2	0.0

Appendix H Theis Worksheets

Thies Equation	KPBi04	
Flow Rate	Q	4000 m3/day
Transmissivty	т	1130 m2/day
Storativity	S	0.001

Distance-d	lrawdown									
	7300	days								
Distance	u	w(u)	Drawdown				Distan	ce (m)		
0.1	3.03E-13	2.82E+01	7.96	0.00	0 5	00	1000	1500	2000	2500
1	3.03E-11	2.36E+01	6.66	1.00						
5	7.58E-10	2.04E+01	5.75	2.00						
10	3.03E-09	1.90E+01	5.36	Ê 3.00						
100	3.03E-07	1.44E+01	4.06	<u>ቻ</u> 4.00		Ĭ				
200	1.21E-06	1.30E+01	3.67	§ 5.00						
500	7.58E-06	1.12E+01	3.16	E 6.00	• •					
1000	3.03E-05	9.83E+00	2.77	7.00						
2000	1.21E-04	8.44E+00	2.38	8.00	•					
				9.00						

Thies Equation	KPBi09	
Flow Rate	Q	4000 m3/day
Transmissivty	т	120 m2/day
Storativity	S	0.001

Distance-d	rawdown				
t	7300	days			
Distance	u	w(u)	Drawdown		
0.1	2.85E-12	2.60E+01	68.97		0.00
1	2.85E-10	2.14E+01	56.76		10.00
5	7.13E-09	1.82E+01	48.22		20.00
10	2.85E-08	1.68E+01	44.54	Ê	20.00
100	2.85E-06	1.22E+01	32.33	, ľ	30.00
200	1.14E-05	1.08E+01	28.65	opw	40.00
500	7.13E-05	8.97E+00	23.79	Dra	50.00
1000	2.85E-04	7.58E+00	20.12		60.00
2000	1.14E-03	6.20E+00	16.44		70.00
					80.00

Thies Equation	KPBi07	
Flow Rate	Q	4000 m3/day
Transmissivty	т	130 m2/day
Storativity	S	0.001

Distance-d	lrawdown						
t	7300	days					
Distance	u	w(u)	Drawdown				Distance (m)
0.1	2.63E-12	2.61E+01	63.86	0.00	50	00 10	000
1	2.63E-10	2.15E+01	52.59	0.00			
5	6.59E-09	1.83E+01	44.71	10.00 -			
10	2.63E-08	1.69E+01	41.31	ਿ ^{20.00}			
100	2.63E-06	1.23E+01	30.04	¥ 30.00 -			
200	1.05E-05	1.09E+01	26.64	8 40.00			
500	6.59E-05	9.05E+00	22.16				
1000	2.63E-04	7.66E+00	18.76	50.00			
2000	1.05E-03	6.28E+00	15.37	60.00			
				70.00	I		.1

Thies Equation	IC4	
Flow Rate	Q	4000 m3/day
Transmissivty	т	450 m2/day
Storativity	S	0.001

awdown								
7300	days							
u	w(u)	Drawdown				Distance (m)		
7.61E-13	2.73E+01	19.33	0.00	0 50	00 10	000 15	00 200	0 2500
7.61E-11	2.27E+01	16.07	0.00					
1.90E-09	1.95E+01	13.79	5.00 -					,
7.61E-09	1.81E+01	12.81	Ê					
7.61E-07	1.35E+01	9.56	<u>ہ</u> 10.00 ک	1				
3.04E-06	1.21E+01	8.58	₽ 15.00					
1.90E-05	1.03E+01	7.28	La rollo					
7.61E-05	8.91E+00	6.30	20.00					
3.04E-04	7.52E+00	5.32						
L	7300 J 7.61E-13 7.61E-11 1.90E-09 7.61E-09 7.61E-07 3.04E-06 1.90E-05 7.61E-05 3.04E-04	7300 days 7300 days w(u) 7.61E-13 2.73E+01 7.61E-13 2.77E+01 1.90E-09 1.95E+01 7.61E-07 1.35E+01 7.61E-07 1.35E+01 3.04E-06 1.21E+01 1.90E-05 1.03E+01 7.61E-05 8.91E+00 3.04E-04 7.52E+00	7300 days y w(u) Drawdown 7.61E-13 2.73E+01 19.33 7.61E-11 2.27E+01 16.07 1.90E-09 1.95E+01 13.79 7.61E-07 1.35E+01 9.56 3.04E-06 1.21E+01 8.58 1.90E-05 1.03E+01 7.28 7.61E-05 8.91E+00 6.30 3.04E-04 7.52E+00 5.32	7300 days y w(u) Drawdown 7.61E-13 2.73E+01 19.33 7.61E-14 2.27E+01 16.07 1.90E-09 1.95E+01 13.79 7.61E-07 1.35E+01 9.56 3.04E-06 1.21E+01 8.58 1.90E-05 1.03E+01 7.28 7.61E-05 8.91E+00 6.30 3.04E-04 7.52E+00 5.32	7300 days y w(u) Drawdown 7.61E-13 2.73E+01 19.33 7.61E-13 2.77E+01 16.07 1.90E-09 1.95E+01 13.79 7.61E-07 1.35E+01 9.56 3.04E-06 1.21E+01 8.58 1.90E-05 1.03E+01 7.28 7.61E-05 8.91E+00 6.30 3.04E-04 7.52E+00 5.32	7300 days i w(u) Drawdown 7.61E-13 2.73E+01 19.33 7.61E-11 2.27E+01 16.07 1.90E-09 1.95E+01 13.79 7.61E-07 1.35E+01 9.56 3.04E-06 1.21E+01 8.58 1.90E-05 1.03E+01 7.28 7.61E-05 8.91E+00 6.30 3.04E-04 7.52E+00 5.32	Table Value Drawdown Distance (m) 7.61E-13 2.73E+01 19.33 0 500 1000 15 7.61E-13 2.73E+01 19.33 0 500 1000 15 7.61E-14 2.27E+01 16.07 1.90E-09 1.95E+01 13.79 5.00	T300 days w(u) Drawdown 7.61E-13 2.73E+01 19.33 7.61E-13 2.73E+01 19.33 7.61E-14 2.27E+01 16.07 1.90E-09 1.95E+01 13.79 7.61E-07 1.35E+01 9.56 3.04E-06 1.21E+01 8.58 1.90E-05 1.03E+01 7.28 7.61E-05 8.91E+00 6.30 3.04E-04 7.52E+00 5.32

