SMITH BAY WHARF

DRAFT ENVIRONMENTAL IMPACT STATEMENT

APPENDIX L

SMITH BAY WHARF

DRAFT ENVIRONMENTAL IMPACT STATEMENT

APPENDIX L

APPENDIX **L**

Smith Bay Site Investigation	•••••	•••••	

Appendix L –
Smith Bay Site
Investigation
– Environmental
Projects

Smith Bay Site Investigation

Smith Bay Kangaroo Island

10 October 2017

7

Table of Contents

1.	Introduction	3
1.1	Background	3
1.2	Objectives	3
2.	Site Investigation	3
2.1	Preliminary Site Investigation	4
	2.1.1 Site History 2.1.2 Intrusive Sampling	4
2.2	CASS Review	5
3.	Existing Environment – Regional Setting	5
3.1	Geology	5
3.2	Soils	6
3.3	Coastal Acid Sulfate Soils	6
3.4	Groundwater	6
3.5	Surface Water	7
4.	Investigation Results	7
4.1	Lithology	7
4.2	CASS	7
4.3	Groundwater	7
4.4	Site Contamination Status	7
	4.4.1 Soil	7
	4.4.2 Groundwater	8
5.	Conclusions	8

List of Appendices

Appendix A

Previous Investigation

1. INTRODUCTION

Environmental Projects (EP) completed a desktop review of previous investigations undertaken at the site and other available published information in order to determine geological, soil, surface water and groundwater conditions at the site.

1.1 Background

As part of the development of the proposed Smith Bay deep water wharf, major earthworks for site development and construction of on-shore facilities, such as timber storage areas (log and woodchip), site buildings, equipment for transfer of timber products to ships for export and supporting infrastructure, would be required.

The on-shore timber product storage area would consist of constructed plateaus to provide flat areas on the otherwise gently sloping site. Approximately half of the storage area site already has narrow plateaus that were formed to create level surfaces for previous abalone tanks; however, they will need to be modified to cater for practical timber product storage.

The preliminary design has a balance cut and fill to achieve wider plateaus for storage and placement of buildings and other infrastructure. The effect of the design is to have no export of soil from the site, with potentially importation of quarry material (that satisfy engineering specifications) for construction of the site surface hardstand.

A stormwater containment and retention system to capture all runoff from the site would also be constructed.

Geological, soil and groundwater conditions at the site needs to be understood for:

- detailing the existing environment, in relation to geology, soil, surface water and groundwater for the
 environmental impact statement (EIS) being prepared for the proposed development
- identification of any issues associated with historical site activities that may have contaminated soil or groundwater on the site
- assessment of aspects which require specific management during site preparation, development, construction or operation.

1.2 Objectives

The objective of the review was to:

 detail the existing geological, soil and groundwater conditions of the Project site within the context of the wider region (to identify potential site specific environmental impacts).

2. SITE INVESTIGATION

The data sources for this desktop review included

• preliminary site investigation (PSI) undertaken in 2016, which collates and assesses data from field investigations and desktop research, see Section 2.1

• published Coastal Acid Sulfate Soil (CASS) data for Kangaroo Island, see Section 2.2.

2.1 Preliminary Site Investigation

Site soil and groundwater condition were assessed by preliminary site investigation (PSI) undertaken in 2016 and reported in:

 Allotments 51 & 52 North Coast Road, Wisanger, South Australia, Preliminary Site Investigation, LBW|ep, 22 December 2016

The PSI included:

- site history investigations (Site History), summarised in Section 2.1.1
- intrusive soil and groundwater sampling, summarised in Section 2.1.2.

2.1.1 Site History

The Site History was undertaken with reference to the following sources:

- Edwards J. W., Van Alphen M and Langley A., Identification and Assessment of Contaminated Land: Improving Site History Appraisal. Contaminated Sites Monograph Series No 3, SA Health Commission, Adelaide (1994)
- National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM)
 1999, as amended 2013
- Planning SA (2001) Site Contamination, Planning Advisory Notice 20 (PAN20)
- Section 50 and Schedule 3 Part 1 of the Environment Protection Regulations 2009.

Based on the desktop review of available information, it was likely that the site was used as farmland until 2001 when it was purchased by K.I Seafood Marketing, before being transferred to Kangaroo Island Abalone Pty Ltd in 2002. It was then used for onshore abalone farming until sometime before 2015, after which the site was disused.

Surrounding areas were predominantly used for farmland purposes with the exception of a commercial onshore abalone farm to the immediate east of site.

Of the likely and suspected historic on- and off-site uses, the most relevant with respect to potential contamination migrating to or being found on the subject site included:

- fill or soil importation
- agricultural activities
- · aquaculture or fish processing.

The results of the site history investigation and identification of relevant potentially contaminating activities (PCAs), as defined by Schedule 3 Part 1 of the Environment Protection Regulations 2009, informed the subsequent intrusive assessment.

2.1.2 Intrusive Sampling

The intrusive investigations were undertaken with reference to the following sources:

- Environment Protection Authority, 2009, Guidelines for the Assessment and Remediation of Groundwater Contamination
- ASC NEPM
- Friebel E and Nadebaum P (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater: Part 2 Application Document, Technical Report No 10, CRC CARE Adelaide
- Standards Australia AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds
- Standards Australia AS 4482.2-1999 Guide to the investigation of potentially contaminated soil Part 2: Volatile substances.

A sampling plan was prepared based on initial findings of the site history, including a combination of systematic (grid-based) and judgemental (targeted) sampling and testing.

A sampling grid of 20 soil bore locations (BH01–BH20) across an approximate 80-m grid and six targeted boreholes (T1–T6) was adopted.

One groundwater sample was retrieved using groundwater grab sampling methodology from soil bore location BH13 after the recovery of the soil core.

A liquid grab sample, identified as GW02, was collected from a 100-mm PVC inspection point which was possibly part of a disused septic tank system.

The PSI report is provided in Appendix A.

2.2 CASS Review

The likely CASS status of site soils was determined on the basis of review of:

- Coastline—A Strategy for Implementing CPB Policies on Coastal Acid Sulfate Soils in South Australia,
 South Australian Coast Protection Board, 2003
- South Australian Inventory of Acid Sulfate Soil Risk (Atlas), CSIRO Land and Water, 2003
- Kangaroo Island Plan, South Australian Planning Strategy, Department of Planning and Local Government, 2011.

3. EXISTING ENVIRONMENT – REGIONAL SETTING

3.1 Geology

The northern coastal zone of Kangaroo Island, where the project area lies, comprises a dissected margin of a laterite surface, with occasional ridges and hills on metamorphics (DEWNR 2011, in EBS 2016). The 1:250,000 Kingscote geology map sheet SI-53-16 (Geological Survey of SA, Dept. of Mines 1962) indicates that the site is in an area underlain by a sequence of Quaternary and Cambrian age sediments, consisting of:

 Quaternary: consolidated dune limestone (eolianite) of the coastal areas; with numerous internal unconformities and fossil soil horizons; siliceous white sands and lesser sheet (soil) travertines extending inland Cambrian: Stokes Bay Sandstone formation, principally massive coarsely current and slumpbedded red and white sandstones and quartzites, with marbles and calcareous slates on the Fleurieu Peninsula.

There is a geological monument 2 km east of the site. This is the 'Smith Bay Glacial Pavements' which extends further along the coast towards Emu Bay for about 1 km.

3.2 Soils

Kangaroo Island soils include calcareous sand soil of minimal development, coherent sandy soils, sandy soils with mottled yellow clayey subsoil and cracking clays.

3.3 Coastal Acid Sulfate Soils

Coastal acid sulfate soils (CASS) are soils and sediments containing iron sulphides. When they are exposed to air due to drainage or disturbance, they produce sulphuric acid and increase the potential for release of metals into the environment.

Potential CASS are present in the coastal regions of South Australia where low-lying coastal sediments have been deposited. Based on site observation (elevation of escarpment and lower beach area) and available maps published by the Australian Soil Resource Information System (ASRIS) no CASS are likely to be present in the locality of the site; however, this evidence is not conclusive.

According to Coastline—A Strategy for Implementing CPB Policies on Coastal Acid Sulfate Soils in South Australia, Kangaroo Island does not have any known CASS sites (South Australian Coast Protection Board 2003). The Kangaroo Island Plan which was a volume of the South Australian Planning Strategy (Department of Planning and Local Government 2011) provides management policies for acid sulfate soils but does not identify locations at risk from CASS.

3.4 Groundwater

The South Australian Government Water Connect database identified four licensed wells within one kilometre radius of the site.

The following key information was identified from the database results:

- One registered bore was located just within the northern boundary of the site. Two other registered bores were located along the northern boundary.
- The wells along the northern boundary of the site were classed as water wells and were installed in 2015 for investigation purposes. Their current status was recorded as being backfilled
- One registered bore was located off site adjacent to the eastern boundary. It was classed as a water well for stock purposes.
- The wells' drilled depths ranged from 20 m below ground level (mBGL) to 54 mBGL. Depth to groundwater was only recorded in one well (drilled to 54 mBGL) and was listed as 5 mBGL.
- Measured total dissolved solids (TDS) concentration recorded from the water well for stock purposes off site to the east was 11,192 mg/L on 5 January 1996. According to the Environment Protection (Water Quality) Policy (2015), groundwater with TDS concentrations exceeding 1,200 mg/L is deemed unsuitable for drinking water purposes.

Based on topography, regional groundwater beneath the site is anticipated to flow in a northerly direction towards Smith Bay.

3.5 Surface Water

The Smith Bay land area was observed during site inspection to generally consists of shallow, seasonal drainage lines, with occasional seasonal lagoons. Catchments for these drainage lines generally extend inland and deepen, extending south-east and south-west into higher-elevation hinterland. The most significant surface water body (though also seasonal) is Smith Creek, west (and off-site) of the development site, which has a shallow estuary into Smith Bay. The creek's catchment deepens rapidly as it extends higher into the south-east.

4. INVESTIGATION RESULTS

4.1 Lithology

The site surface usually consisted of a shallow reworked natural layer including various sand or clay mixtures. This fill may have been imported during development of the site for former land-based aquaculture use.

Natural soils typically consisted of various clay and silt mixtures from the surface.

The underlying natural soils were generally described as medium to high plasticity clays with various calcareous, silt and sand inclusions. Sandstone gravels and sandstone were usually encountered with depth.

Field observations indicated that the site soils were free from any physical evidence of contamination.

4.2 CASS

No CASS was intercepted during site investigation.

4.3 Groundwater

A groundwater grab sample was collected from a soil borehole location towards the northern boundary of site. The depth to water during drilling was measured at 1.65 mBGL. The total depth of the soil borehole was 2.25 mBGL. Groundwater recharge into the soil borehole was slow, suggesting low aquifer yield.

Groundwater in this location had TDS concentration of 18,000 mg/L, indicative of saline conditions. Groundwater is potentially connected to the marine environment.

4.4 Site Contamination Status

4.4.1 Soil

Concentrations of all analytes in samples tested were below the laboratory limit of reporting (LOR) and/or the applicable ASC NEPM 1999 (amended 2013) Health Investigation and Screening Levels (HIL/HSLs) for the proposed industrial use and Ecological Investigation and Screening Levels (EIL/ESLs).

The results indicated background levels of soil contaminant concentrations and therefore the absence of site contamination.

4.4.2 Groundwater

Iron and lead concentrations exceeded the criteria specified in the Australian and New Zealand Environment Conservation Council (ANZECC) aquaculture and human consumption for saltwater production.

Cobalt and copper concentrations exceeded the ANZECC aquatic marine ecosystems criteria.

Concentrations of TRH were reported in groundwater but retesting of the sample confirmed that no petroleum hydrocarbons were present.

Nitrite concentrations exceeded the criterion specified by the ANZECC aquaculture and human consumption for saltwater production.

Sulfate concentrations exceeded the National Health and Medical Research Council (NHMRC) recreational aesthetic criterion.

All other contaminants included in the extensive analytical suite for the groundwater grab sample had concentrations below the laboratory LOR.

The results did not suggest that previous site activities had caused groundwater contamination and detected concentrations were considered to be background levels for saline water.

5. CONCLUSIONS

Information collated as part of this review is relevant for describing the existing environment for geology, soils, surface water and groundwater for the subject site.

On the basis of the results of this desk-top review, the following conclusions could be drawn with regards to site soil and groundwater status:

- regional soils were likely to include calcareous sand soil of minimal development, coherent sandy soils, sandy soils with mottled yellow clayey subsoil and cracking clays. Site drilling intersected various clay and silt mixtures from the surface underlain by high plasticity clays with various calcareous, silt and sand inclusions. Sandstone gravels and sandstone were usually encountered with depth.
- CASS was unlikely to be present in the region and was not intersected during site drilling.
- Total dissolved solids (TDS) concentration recorded from the water well off site to the east was 11,192 mg/L on 5 January 1996. Based on topography, regional groundwater beneath the site was anticipated to flow in a northerly direction towards Smith Bay.
- Depth to groundwater measured during drilling was 1.65 mBGL, TDS concentration of 18,000 mg/L was indicative of saline conditions, recharge suggested low aquifer yield.
- The results of soil sample analysis indicated background levels of soil contaminant concentrations and therefore the absence of site contamination.
- The results of groundwater sample analysis did not suggest that previous site activities had caused groundwater contamination and detected concentrations were considered to be background levels for saline water.

Appendix A

Previous Investigation

LBW environmental projects

Allotments 51 & 52 North Coast Road, Wisanger, South Australia Preliminary Site Investigation

Report for Kangaroo Island Plantation Timbers

Allotments 51 & 52 North Coast Road, Wisanger, South Australia Preliminary Site Investigation

Report for Kangaroo Island Plantation Timbers

Table of Contents

Exec	utive S	Summary	
1		duction	
	1.1	Objectives	1
2	Regu	latory Framework	2
3		e of Work and Methodology – Site History	
J	3.1	Guidance	3
	3.2	Methodology	3
4	Site I	nformation	4
	4.1	Site Details and Identification	4
	4.2	Topography	4
	4.3	Geology	4
	4.4	Hydrogeology	4
	4.5	Sensitive Receiving Environments	5
	4.6	Site Inspection	5
	4.7	Site Interview	6
	4.8	Adjacent Land Uses	6
5	Site H	fistory	7
	5.1	Certificate of Title	7
	5.2	Aerial Photographs	7
	5.3	EPA Public Register Searches	8
		5.3.1 Section 7	8
		5.3.2 Site Contamination Index	9
	5.4	Dangerous Substances Register	9
	5.5	Kangaroo Island Council	9
	5.6	Historical Overview	9
6	Prelir	ninary Conceptual Site Model	10
7	Scop	e of Work and Methodology - Intrusive Assessment	15
	7.1	Intrusive Assessment Guidance	15
	7.2	Soil Sampling and Analysis Rationale	15
		7.2.1 Targeted Sampling	16
	7.3	Fieldwork Methodology	17
8	Bene	ficial Use Assessment	19
9	Scree	ening Criteria	22
	9.1	Framework	22
	9.2	Soil Assessment Criteria	22
		9.2.1 Human Health and Environmental Screening Guidelines	22
		9.2.2 Ecological Screening Criteria	22
		9.2.3 ASC NEPM Management Limits for Soils	23
		9.2.4 Soil Disposal Criteria	23
	9.3	Groundwater Assessment Criteria	24
		9.3.1 Human Health and Environmental Screening Guidelines	24

10	Soil R	Pesults	26
	10.1	Soil Lithology	26
	10.2	Soil Analytical Results	26
11	Grou	undwater Results	27
	11.1	Groundwater and Liquid Waste Sample Summary	27
	11.2	Analytical Results	27
		11.2.1 Heavy Metals	27
		11.2.2 TRH	28
		11.2.3 Nutrients	28
		11.2.4 Sulphate	28
		11.2.5 TDS	28 29
		11.2.6 Non-detectable Contaminants	
12		Data Validation	
	12.1	Groundwater Data Validation	31
13	Discu	ussion	33
	13.1	Soil Contamination	33
	13.2	Groundwater	33
		13.2.1 Groundwater Grab Sample	33
	100	13.2.2 Septic	33
	13.3	Conceptual Site Model	34
14	Con	clusions and Recommendations	40
15	Limit	ations	42
liet.	~£ T.	ablee.	
		ables	- 10
Table	7.7	Site Identification Details	4
Table	2	Aerial Photography Review	7
Table	3	Preliminary CSM - Desktop Assessment of Risk from PCAs	11
Table	4	Preliminary CSM - Desktop Assessment of Risk from Other Activities of Environmento Significance	al 11
Table	5	Summary of Grid Based and Targeted Laboratory Analysis	15
Table	6	Targeted Sampling Plan	16
Table	7	Field investigation methodology	17
Table	8	Beneficial Use Assessment	19
Table	9	Summary of Groundwater Assessment Criteria	25
Table	10	Soil Data Validation	31
Table	11	Groundwater Data Validation	32
Table	12	Conceptual Site Model Development	36

List of Appendices

- A Figures
- B Certificate of Title and Site History
- C WaterConnect Groundwater Database Search
- D Site Inspection Photographs
- E Historical Aerial Photographs
- F EPA Public Register Searches
- G SafeWork SA Dangerous Substances Search
- H Soil Chemical Summary Tables
- I Water Chemical Summary Tables
- J Soil Borehole Logs
- K Laboratory Reports and Chain of Custody Documentation Soil

List of Acronyms

ADWG Australian Drinking Water Guidelines 2011

AHD Australian Height Datum

ASC NEPM National Environment Protection (Assessment of Site Contamination) Measure 1999 (as

amended in 2013)

ASLP Australian Standard Leaching Procedure (AS4439.3)

CSM Conceptual Site Model
CT Certificate of Title

COC Chain of Custody

DEWNR Department for Environment, Water and Natural Resources, Government of South Australia

EPA Environment Protection Authority, Government of South Australia
EP Act Environment Protection Act 1993, Government of South Australia

EPP-WQ Environment Protection (Water Quality) Policy 2015, Government of South Australia

IWS Intermediate Waste Soil

LBW | ep LBW Environmental Projects Pty Ltd
LLCW Low-Level Contaminated Waste
mAHD metres Australian Height Datum
mBGL metres below ground level

MEP Multiple Extraction Procedure

NEPC National Environment Protection Council

OCP Organochlorine pesticides
OPP Organophosphorus pesticides
PAH Polycyclic aromatic hydrocarbons
PEV Protected Environmental Value
PCA Potentially contaminating activity
PSI Preliminary Site Investigation

QA/QC Quality Assurance / Quality Control

RWL Relative Water Level

SA South Australia

TDS Total Dissolved Solids

UST Underground storage tank

WF Waste Fill

WQP Environment Protection (Water Quality) Policy 2015, Government of South Australia

Executive Summary

1

1 Introduction

LBW Environmental Projects (LBW | ep) was commissioned by Kangaroo Island Plantation Timbers Pty Ltd (KIPT) to undertake a Preliminary Site Investigation (PSI) of the allotment identified as comprising pieces 51 and 52 of Deposited Plan 92343, North Coast Road, Wisanger, South Australia (the site). The PSI comprised a desktop site history investigation and a preliminary assessment of site soils and groundwater. A site location plan is provided as Figure 1 in Appendix A.

At the time of commissioning and based on the information provided, LBW | ep understood:

- The site had an approximate area of 11.7 ha;
- The site was historically used for agricultural purposes, cropping and grazing, and for land based abalone aquaculture;
- The history of potentially contaminating activities (PCAs) undertaken at the site was unknown;
- KIPT proposed to construct a deep water wharf with associated on-shore levelled tiers over an
 approximate 8 ha portion of the site, for storage of logs for shipment, access roads and other
 associated infrastructure;
- Prior to construction, KIPT sought to gain a better understanding of the potential contamination risks associated with PCAs that had occurred at the site.

1.1 Objectives

The objectives of the PSI - Site History were to:

- Research current and historical land uses and associated activities undertaken at or adjacent to the site to identify whether PCAs may have occurred on or near the subject site; and
- Provide a current desktop assessment of risk with respect to the likelihood that PCAs could have caused site contamination, with regards to the proposed commercial land use.

The objectives of the intrusive assessment were to:

- Characterise the contamination status of site soils in consideration of the PCAs and areas of interest identified in the Site History Review;
- Assess whether site soils were suitable for the proposed commercial land use, or whether remediation or management might be needed to achieve the desired outcome;
- Develop preliminary advice on waste classification for soils which may become surplus to needs during future redevelopment of the site, and
- Assess the groundwater contamination status with respect to the proposed commercial land use.

This investigation was undertaken in general accordance with LBW | ep's proposal to KIPT, dated 26 August 2016.

2 Regulatory Framework

In South Australia, the assessment, management and remediation of site contamination is regulated by the *Environment Protection Act 1993* (EP Act). The *EP Act 1993* defines site contamination in section 5B as follows:

- (1) For the purposes of this Act, site contamination exists at a site if—
 - (a) chemical substances are present on or below the surface of the site in concentrations above the background concentrations (if any); and
 - (b) the chemical substances have, at least in part, come to be present there as a result of an activity at the site or elsewhere; and
 - (c) the presence of the chemical substances in those concentrations has resulted in—
 - actual or potential harm to the health or safety of human beings that is not trivial, taking into account current or proposed land uses; or
 - (ii) actual or potential harm to water that is not trivial; or
 - (iii) other actual or potential environmental harm that is not trivial, taking into account current or proposed land uses.
- (2) For the purposes of this Act, environmental harm is caused by the presence of chemical substances—
 - (a) whether the harm is a direct or indirect result of the presence of the chemical substances; and
 - (b) whether the harm results from the presence of the chemical substances alone or the combined effects of the presence of the chemical substances and other factors.
- (3) For the purposes of this Act, site contamination does not exist at a site if circumstances of a kind prescribed by regulation apply to the site.

The first stage in determining whether or not site contamination exists is to assess whether chemical substances have been added to the site through an activity and whether these substances are above background concentrations. The second stage is to assess whether the chemical substances have resulted in actual or potential harm to the health or safety of human beings or the environment (including water) that is not trivial.

If site contamination is determined to be present at a site, the *EP Act 1993* provides mechanisms to assign responsibility for the contamination and appropriate assessment and/or remediation of the contamination.

The professional assessment of site contamination and consequential risk to human health and the environment is guided by the National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council (ASC NEPM) 1999, as amended 2013), Australian Standards and numerous other guidelines and technical publications prepared by the SA EPA and other scientific organisations.

3 Scope of Work and Methodology – Site History

3.1 Guidance

The PSI – Site History works were undertaken with reference to the guidance provided in the following documents:

- Edwards J. W., Van Alphen M and Langley A., Identification and Assessment of Contaminated Land: Improving Site History Appraisal. Contaminated Sites Monograph Series No 3, SA Health Commission, Adelaide (1994);
- ASC NEPM, and
- Planning SA (2001) Site Contamination, Planning Advisory Notice 20 (PAN20).

Assessment of PCAs was made with reference to Section 50 and Schedule 3 Part 1 of the Environment Protection Regulations 2009 as well as PAN20.

3.2 Methodology

The history of PCAs undertaken on or adjacent to the site was researched using the following sources of information:

- Aerial photographic records provided by Mapland and other aerial image resources;
- Certificate of title information obtained from the Lands Titles Office;
- Published geology and topography maps of the region;
- Water Connect database of groundwater records, maintained by the Department for Environment, Water and Natural Resources (DEWNR);
- Local planning authority records;
- Environment Protection Authority (EPA) Public Register search under Section 7, Land and Business (Sales & Conveyancing) Act 1994 and interrogation of the Public Register Directory Site Contamination Index for the local area;
- SafeWork SA Dangerous Substances Register; and
- Observations and information gathered during a site inspection.

4 Site Information

4.1 Site Details and Identification

Site identification details are provided in Table 1. A copy of the current Certificates of Title (CTs) for the site are provided in Appendix B.

Table 1 Site Identification Details

Site address	1970B North Coast Road, Wisanger, SA	
CT References	CT Volume 6127 Folio 273	
Site Area	117,000 m² (approximately)	
Current Site Owner	Cinerea Pty Ltd	
Local Government Authority	Kangaroo Island Council	
Zoning	Coastal Conservation	
Current Land Use	Commercial	
Proposed Land Use	Commercial	

4.2 Topography

According to the topographic map of the Yorke Peninsula and Kangaroo Island (Dept. of Lands 1990), the site has an elevation of approximately 10-30 m Australian Height Datum (AHD), sloping to the north towards Smith Bay. The surrounding land generally slopes to the north, with a steep cliff face along the foreshore on the northern end of site.

4.3 Geology

The 1:250,000 Kingscote geology map sheet SI-53-16 (Geological Survey of SA, Dept. of Mines 1962), indicated that the site was in an area underlain by a sequence of Quaternary and Cambrian age sediments, consisting of:

- Quaternary: consolidated dune limestone (eolianite) of the coastal areas; with numerous internal unconformities and fossil soil horizons; siliceous white sands and lesser sheet (soil) travertines extend inland; and
- Cambrian: Stokes Bay Sandstone formation: principally massive coarsely current and slumpbedded red and white sandstones and quartzites, with marbles and calcareous slates on the Fleurieu Peninsula.

4.4 Hydrogeology

Regional groundwater beneath the site is anticipated to flow towards Smith Bay, in a northerly direction.

In September 2016, a search of the South Australian Government *Water Connect* database identified 4 wells within a 1 km radius of the site. A copy of the search results is provided in Appendix C.

The following key information was identified from the database results:

- One registered bore was located just within the northern boundary of the site. Two other registered bores were located along the northern boundary;
- The wells along the northern boundary of site were classed as water wells and were installed in 2015 for investigation purposes. Their current status was recorded as being backfilled;

- One registered bore was located offsite adjacent to the eastern boundary. It was classed as a water well for stock purposes;
- The wells' drilled depths ranged from 20 m below ground level (mBGL) to 54 mBGL. Depth to groundwater was only recorded in one well (drilled to 54 mBGL) and was listed as 5 mBGL.
- Measured total dissolved solids (TDS) concentrations recorded from the water well for stock purposes offsite to the east was 11,192 mg/L on 5 January 1996. According to the Environment Protection (Water Quality) Policy (2015), groundwater with TDS concentrations exceeding 1,200 mg/L is deemed unsuitable for drinking water purposes.

4.5 Sensitive Receiving Environments

The closest sensitive receiving environments were Smith Creek, located between 20 and 100 m west of the site and Smith Bay, located 10 m to the north of the site boundary.

4.6 Site Inspection

On 11 October 2016, an experienced Environmental Consultant from LBW | ep conducted a walkover of the site. Important features pertaining to the potential for site contamination were noted and a photographic record was made.

Selected photographs taken of the on-site features are presented in Appendix D.

At the time of the inspection the following onsite key observations were made:

- The site had a moderate to steep slope north towards the foreshore of Smith Bay;
- The site included a house, in the approximate center, with:
 - Septic system north of the house
 - A shed to the south of the house
 - Immediately south of the shed a 100 mm PVC pipe and concrete plinth were noted at the surface and appeared to be a potential disused septic.
 - Approximately 5 aboveground rainwater tanks.
- Remnant infrastructure from a former onshore abalone farm was evident towards the eastern half of site. It included:
 - Cut and levelled platforms into the hillside
 - Rows of circular, potential abalone tank footprints that graded to an underground drain in the center
 - Decommissioned underground power
 - A steep earthen slope north of each cut level. At the base of the steep slope was a concrete drain with large pipes draining into the underground drain. The pipes appeared to be coming from the center of the former circular abalone tanks
 - Underground and surface drainage infrastructure that appeared associated with abalone tanks/farming
- No evidence of fuel storage, significant chemical storage or surficial staining or odours;
- No asbestos containing materials (ACM) observed on the site's surface;
- Two dams on the approximate western side of the site. The dam towards the north western corner of site had large pipes entering/exiting from the south-east and north-west corners and 'gate' at the western side;

- Some potential agricultural cropping to the south and west of site;
- A dirt access road to the house along the southern half of the western boundary and northeast to the house. An access road from the house to the foreshore

At the time of the inspection the following offsite key observations were made:

- The cut and levelled platforms with footprints of former abalone tanks and associated drainage/water infrastructure continued to the immediate east of the site boundary.
- Possibly three large sheds and a potential generator
- An active abalone farm was located to the east of site
- Farmland and a creek running into Smith Bay were located to the west of site
- Farmland was located to the south of site. Crop dusting further to the south was observed during the site inspection
- The sea (Investigator Strait) was located to the north of site. Water was observed to be discharging from the active abalone farm, east of site, into the ocean

4.7 Site Interview

Mr John Sergeant, Managing Director of KIPT, contacted the previous owners of the site who confirmed the 100mm pvc riser and concrete plinth were part of a disused septic system.

4.8 Adjacent Land Uses

Based upon the site inspection and review of current aerial photography, the land immediately surrounding the site is described below:

- North: Smith Bay and Investigator Strait;
- East: continuation of cut and levelled platforms with former circular abalone tank footprints with associated drainage/water infrastructure, approximately three sheds and an active abalone farm;
- South: agricultural land;
- West: agricultural land, Smith creek running into Smith Bay.

5 Site History

5.1 Certificate of Title

On 31 August 2016, LBW | ep conducted a search on the Property Assist website of the current and historical certificates of title (CTs) for the site.

Available records date back to 1906 with the land originally granted to John Turner, a farmer. The site was owned by farmers until at least 1995.

Two easements were granted to ETSA Corporation (now SA Power Networks) in 1997 and 1998.

The site was purchased by K.I Seafood Marketing Pty Ltd in 2001 and transferred to Kangaroo Island Abalone Pty Ltd in 2002. The current site owner, Cinera Pty Ltd, purchased the site in 2014.

For a more detailed site ownership history, refer to the summary of current and historical information presented as a title tree in Appendix B.

5.2 Aerial Photographs

Selected aerial photographs of the site and surrounding area, covering a period from 1983 to 1999 inclusive, were acquired from DEWNR. Satellite images taken in 2002 and 2015 were obtained from Google Earth. Copies of the images are provided in Appendix E.

A summary of the features and apparent land use(s) observed in the historical aerial photography is provided in Table 2.

Table 2	Aerial Photography Review
---------	---------------------------

Year	Description									
1983	On-site:									
	The site was vacant farmland with some trees scattered along the northern boundary									
	Off-site:									
	 The surrounding land was generally farmland, with some small farmhouses to the south and south east of the site; 									
	A dam was located to the east of the site;									
	 Investigator Strait was located along the northern site boundary; and 									
	A creek was located to the west of the site.									
1989	On-site:									
	Largely unchanged from the previous image.									
	Off-site:									
	Largely unchanged from the previous image.									
1993	On-site:									
	Largely unchanged from the previous image.									
	Off-site:									
	Largely unchanged from the previous image.									
1999	On-site:									
	 A potential house and shed had been built in the approximate centre of site with access road running down the western boundary before turning north-east towards the buildings; 									
	 A water dam had been built near the eastern boundary; 									
	 The southern portion of the site remained unchanged. 									
	Offsite:									
	 A commercial development was present to the east of the site and appeared to be the on- shore abalone farm. 									

Year	Description
2002	On-site:
	 Significant development of the site was apparent. On the approximate eastern half of site there appeared to have occurred significant earthworks to create approximately five levelled platforms;
	 Circular structures, potentially on-shore above ground water tanks for abalone farming, were evident with other associated infrastructure;
	The dam on the eastern boundary was no longer visible;
	 A dam was located towards the north-western corner of site. A pipeline appeared to run from the dam to the east of site;
	Additional access tracks were evident.
	Offsite:
	 A large shed or shade structure was located to the east of the site boundary; and
	 Significant natural vegetation was noted beyond the creek to the west of the site.
2015	On-site:
	 Commercial operations, potentially on-shore abalone farming, appeared to have increased between 2002 and sometime before 2015 (evident from the many additional potential above ground abalone tank footprints onsite) but appeared to have stopped sometime before 2015 and potential above ground tanks for site operations had been removed;
	 Former commercial footprint appeared overgrown and disused;
	 Trees were present alongside the track along the western boundary.
	Offsite:
	Largely unchanged from the previous image.

5.3 EPA Public Register Searches

5.3.1 Section 7

A Section 7 Search under the Land and Business (Sales and Conveyancing) Act 1994 was conducted by the Environmental Protection Authority for the site. A copy of the search results is provided in Appendix F. The search results indicated the following, as of 29 June 2016:

- There were no mortgages, charges or prescribed encumbrances affecting the site under the relevant sections of the Environment Protection Act 1993.
- No licence or environmental authorisation was ever issued to operate a waste depot on the land under the South Australia Waste Management Commission Act 1979, the Waste Management Act 1987 or the Environment Protection Act 1993;
 - The EPA held details of a license no longer in force issued under Part 6 of the Environment Protection Act 1993 to conduct at the land any other prescribed activity of environmental significance under Schedule 1 of Part A of that Act.
 - LBW | ep contacted the EPA Public Register on 28 September 2016 for any information regarding the cancelled license. LBW | ep were provided with a copy of the License provided to KI Seafood Marketing granting permission to undertake activities of environmental significance. These activities were listed as aquaculture or fish farming.
- In relation to the subject site, the EPA Register did not hold any information relating to:
 - Material or serious environmental harm cause or threatened in the course of an activity;
 - Notifications to SA EPA for contamination of underground water under section 83A or serious or material environmental harm under section 83 of the Environment Protection Act 1993; and
 - Environmental assessment report(s) or site contamination audit report(s).

5.3.2 Site Contamination Index

The EPA maintains a searchable database on its website of key notifications made to the EPA in regard to site contamination. The database is called the Site Contamination Index (http://www.epa.sa.gov.au/data and publications/site contamination index/). On 31 August 2016, LBW | ep conducted a search of the database for the suburbs within 1 km of the subject site including Wisanger (see Appendix F). No notifications were returned for the search.

5.4 Dangerous Substances Register

A request for a search of the site on the Dangerous Substances Register was lodged with SafeWork SA on 31 August 2016. A response from SafeWork SA dated 6 September 2016 indicated no records relating to the site. A copy of the response is provided in Appendix G.

5.5 Kangaroo Island Council

On 31 August 2016, LBW | ep contacted a representative from the Kangaroo Island Council. Council indicated that they held records relating to the following development applications:

- A shed;
- A new dwelling;
- Land division of 1 allotment into 2 allotments:
- 40 x 20 metre live feed shed; and
- An Abalone farm.

The council did not provide application dates for the listed developments.

5.6 Historical Overview

Based on the desktop site history research conducted by LBW | ep, it was likely that the site was used as farmland until 2001 when it was purchased by K.I Seafood Marketing, before being transferred to Kangaroo Island Abalone Pty Ltd in 2002. It was then used for onshore abalone farming until sometime before 2015, after which the site has been disused.

Surrounding areas were predominantly used for farmland purposes with the exception of a commercial onshore abalone farm to the immediate east of site.

Of the likely and suspected historic on and off-site uses, the most relevant with respect to potential contamination migrating to or being found on the subject site included:

- Fill or soil importation;
- Agricultural activities; and
- Aquaculture or Fish processing.

6 Preliminary Conceptual Site Model

A preliminary conceptual site model (CSM) has been formulated, utilising the site history information reported herein and LBW | ep's professional judgement, to assess the presence of PCAs (possible sources), exposure pathways and subsequent risk to receptors for the proposed commercial use. Relevant receptors include site construction workers, wharf workers, ecosystems and the built environment.

A desktop assessment of PCAs and other activities that were likely to have been undertaken at or near the site and their likely significance with respect to site contamination for the proposed land use is presented in Tables 3 and 4.

Table 3 Preliminary CSM - Desktop Assessment of Risk from PCAs

Potentially contaminating activity	Contaminants of potential concern	Likely location (See Figures 2 and 3 in Appendix A)	Relevant Media			2007	otenti ecept		
			Soil	Soil Vapour	Groundwater	Humans	Ecosystems	Built	Potential risk and/or liability for future commercial land use
On Site				1 110					
Fill or soil importation	Various, typically including: Heavy metals, polycyclic aromatic hydrocarbons, and petroleum hydrocarbons.	In soils across the site particularly in former tank base areas	Y	Y	Y	Y	Y	Y	Moderate Uncontrolled fill is expected to be present in the vicinity of the vehicle track and commercial areas associated with onshore abalone farming facilities. In the event that contamination is present in uncontrolled fill, there may be a risk to future site users as well as to site workers through dermal contact and contaminated dust inhalation. Potential for volatile chemical contamination in the fill is considered to be low. In the event that contaminated waste soils are generated during redevelopment works, higher costs for off-site disposal are likely to be incurred.
Off-site									
Fill or soil importation	Various, typically including: Heavy metals, polycyclic aromatic hydrocarbons, and petroleum hydrocarbons	East, south and west of the site	Y		2	Y	Y		Negligible Contaminated fill on adjacent sites was unlikely to present a risk to the proposed land use as contaminants commonly encountered in fill including metals and polycyclic aromatic hydrocarbons, posed minimal migration risk and very low vapour risk.

Table 4 Preliminary CSM - Desktop Assessment of Risk from Other Activities of Environmental Significance

Potentially contaminating activity		Likely location (See Figure 2 in Appendix A)	Relevant Media		Potential Receptors				
	Contaminants of potential concern		Soil	Soil Vapour	Groundwater	Humans	Ecosystems	Built	Potential risk and/or liability for future sensitive land use
On Site									
Food production and animal and plant product processing – fish processing	Nutrients, heavy metals, polycyclic aromatic hydrocarbons, petroleum hydrocarbons	Northern portion of the site	Y	·	=)	Y	Y		Moderate The northern portion of the site was historically used as a seafood/abalone farm. There is a potential for site contamination to exist as a result of this commercial use. In the event that contamination is present in soils, risks for future users are likely to be low. Waste soils generated by redevelopment works may be contaminated and pose higher cost for off-site disposal. Leaks from onsite storage containers or poor waste disposal practices could contaminate soils and groundwater. Groundwater contamination may pose a risk to site users via vapour intrusion and groundwater extraction, as well as to site workers through dermal contact and contaminated dust inhalation. Contaminated groundwater also poses a minor risk to the nearby marine environment of Gulf St Vincent.
Agricultural activities	Various, typically including: Agricultural chemicals such as herbicides and OCPs		Y	282		Y	Y		Low The site has been used for agricultural activities which may have introduced agricultural chemicals to surface soils. The intensity of historical chemical applications onsite is unknown. Pesticides and termiticides could have been applied around buildings in the northern portion of the site, as well as pesticides and herbicides across the wider site for weed control. Arsenic, OCPs and OPPs may be present in soils, but would be likely to be limited to shallow fill on site. In the event that pesticide contamination was present in soils, risks for future site users are likely to be low. Waste soils generated by redevelopment works may be contaminated and pose higher cost for disposal offsite.
Off-site									
Food production and animal and plant product processing – fish processing	Nutrients, heavy metals, polycyclic aromatic hydrocarbons, petroleum hydrocarbons	Northern portion of the site	Y	9	2	Y	Y	-	Low The seafood/abalone farm was also present to the east of the site. There is a potential for site contamination to exist as a result of this commercial use, however contaminant migration via soils was considered highly unlikely.

			Relevant Media			Potential Receptors			
Potentially contaminating activity	Contaminants of potential concern	Likely location (See Figure 2 in Appendix A)	Soil	Soil Vapour	Groundwater	Humans	Ecosystems	Built	Potential risk and/or liability for future sensitive land use
					Ŭ				As the majority of works appeared to be above ground, and the likely northerly groundwater hydraulic gradient, it was considered unlikely groundwater contamination posed an unacceptable risk to the site.
Agricultural activities	Various, typically including: Agricultural chemicals such as herbicides and OCPs		Υ	9	Y	Y	Y	120	Negligible Historical photographs suggest the surrounding land was also used for agricultural purposes. Specific information relating to the offsite application of chemicals was not identified during the site history investigation. There is a potential for spray drift to have impacted site soils during periods of unfavourable wind conditions, however contaminant migration by soils was considered highly unlikely.

7 Scope of Work and Methodology - Intrusive Assessment

7.1 Intrusive Assessment Guidance

The intrusive investigations were undertaken with reference to the guidance provided in the following documents:

- Environment Protection Authority, 2009, Guidelines for the Assessment and Remediation of Groundwater Contamination.
- National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (ASC NEPM);
- Friebel E and Nadebaum P (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater: Part 2 Application Document, Technical Report No 10, CRC CARE Adelaide;
- Standards Australia AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds; and
- Standards Australia AS 4482.2-1999 Guide to the investigation of potentially contaminated soil
 Part 2: Volatile substances.

7.2 Soil Sampling and Analysis Rationale

Prior to the commencement of intrusive investigations onsite, a sampling plan was prepared based on initial findings of LBW | ep's PSI desktop site history research. LBW | ep considered an investigation programme that included a combination of systematic (grid-based) and judgemental (targeted) sampling and testing was needed. A sampling grid of 20 soil bore locations across an approximate 80 metre grid and six targeted boreholes was adopted.

The reduced sampling density, compared to the recommended density in AS 4482.1-2005, was considered appropriate for initial baseline assessment. The sampling density provided for a relatively high resolution and representative characterisation to assess for any contamination of fill and natural soils across the site.

Recovery of soil samples from cores and selection of samples for testing was undertaken using a judgemental approach. Field observation of physical evidence of contamination was used to guide selection of representative samples for laboratory analysis. Chemical testing generally focused on near surface soils, where contamination residues were most likely to be present, within any potential uncontrolled fill materials or from pesticide application and/or other residues. In addition to the analysis of samples from upper soil layers, a range of deeper samples were tested from across the site to characterise underlying natural soils.

Selected soil samples recovered from the sampling locations were tested for a broad range of chemicals associated with the identified PCAs and activities, summarised in Table 5.

Table 5 Summary of Grid Based and Targeted Laboratory Analysis

Analyte	Grid Based Soil Bores	Targeted Soil Bores	
	Number of Samples Analysed at the Laboratory		
Heavy Metals (12)1	20	5	
pH Value	15		
Organochlorine pesticides (OCPs) & organophosphorus pesticides (OPPs)	9	5	

Total recoverable hydrocarbons (TRH) and benzene, toluene, ethylbenzene and xylenes (BTEX)	9	5
Polycyclic aromatic hydrocarbons (PAHs)	9	5
Nitrate, nitrite, ammonia, phosphorus	12	3
Herbicides	6	ä
Sulphate and chloride	6	i i
NEPM HIL Screen ¹	4	1
NEPM EIL Screen ²	2	*
SPOCAS/acid sulphate soil	3	2
Termiticides	F	2

¹ NEPM Screen Health Investigation Levels (HILs) for Soil Contaminants – TRH, BTEX, PAHs, phenols, OCPs including mirex and toxophene, OPPs including chlorpyrifos, PCBs, atrazine, bifenthrin, acid herbicides, metals (arsenic, beryllium, boron, cadmium, cobalt, chromium, copper, lead, mercury, manganese, nickel, selenium, zinc), hexavalent chromium and cyanide (free)

² NEPM Ecological Investigation Levels (ElLs) Screen for Soil Classification (percent iron, cation exchange capacity, pH(CaCl2), total organic carbon and percent clay content)

Analytical testing was undertaken by Envirolab and Eurofins | mgt, both NATA accredited for the testing undertaken.

A plan displaying the soil sampling locations is provided as Figure 2 in Appendix A.

7.2.1 Targeted Sampling

The areas LBW | ep identified for targeted sampling and the rationale for testing are summarised in Table 6. A plan displaying the targeted soil sampling locations is provided as Figure 2 in Appendix A.

Table 6 Targeted Sampling Plan

Area	Rationale	Chemical Testing	
TI	Location of shed and garage. Soil bore location, sampling and chemical testing was to investigate the potential for uncontrolled fill, application of mixing/spills of chemicals and sub-slab treatment with termiticides	12 metals OCP and OPP TRH and BTEX PAH Termiticides	
T2, T4 & T5 Location of former onshore abalone farm infrastructure and operation. Soil bore locations, sampling and chemical testing was to investigate the potential for uncontrolled fill, nutrients from any feed and supplements for abalone, application of mixing/spills of chemicals, treatment of infrastructure footprint with pesticides, fungicides and termiticides		NEPM HIL Nitrate, nitrite, ammonia and phosphorus 12 metals OCP and OPP TRH and BTEX PAH Termiticides	
Т3	Location of current septic system. Soil bore location, sampling and chemical testing was to investigate the potential for soil contamination from the septic system	12 metals TRH and BTEX PAH Nitrate, nitrite, ammonia and phosphorus	
T6	Location of soil adjacent former abalone tank area drainage discharge point. Soil grab	12 metals OCP and OPP	

sample was to investigate the potential for	TRH and BTEX
uncontrolled fill, spills of drainage water and	PAH
potential additives to water	Nitrate, nitrite, ammonia and phosphorus

7.3 Fieldwork Methodology

The intrusive soil and groundwater fieldwork methodology, including field quality assurance/quality control (QA/QC) measures implemented during the investigation are summarised in Table 7.

Table 7 Field investigation methodology

Activity	Details	
Environment, Health and Safety	Prior to the commencement of field activities a site specific environmental health and safety (EHS) plan was prepared and a site sampling plan developed. Dial Before You Dig details were obtained by LBW ep to identify potential underground services at the site. A suitably qualified service locator was engaged by LBW ep to locate underground services at the proposed drilling locations to provide a high level of confidence that the sampling locations were free of underground services. Locations were adjusted as required based on the presence of services.	
Soil sampling	On 11, 12 and 13 October 2016, 20 grid based soil sampling locations (BH01-BH20) and sit targeted soil sampling locations (T1-T6) were completed onsite. Grid based soil bores were drilled to depths of at least 1 mBGL. Soil bores BH01 to BH 12 were drilled to an approximate total depth of 5 mBGL using push tube methods. The targeted soil bores were drilled using hand auger methodology to depths ranging from 0.35 mBGL (T5) to 0. mBGL (T3). Soil cores recovered by the drilling contractor were discharged into a clean core tray.	
	Soil samples were obtained by LBW ep's consultant from depth intervals considered relevant for sampling and potential testing, based on field observations, with consideration of potential for contamination.	
	During sampling, individual identification numbers were assigned to each sample collected, based on the borehole ID, and the depth sequence of the sample from the top of the borehole.	
Groundwater grab sampling	On 11 October 2016, one groundwater sample was retrieved by In-Depth Drilling using groundwater grab sampling methodology from soil bore location BH13 after the recovery of the soil core. The groundwater grab sample, identified as GW01, was retrieved as follows: Drilling was completed to approximately 2.25 mBGL using push tube methodology to	
	intersect the saturated zone; Upon intersecting the groundwater, the outer tube sheath was retracted to expose a	
	metal screen, allowing groundwater to enter the tube;	
	Groundwater was then recovered from the tube interior using a disposable bailer.	
	On 13 October 2016 a liquid grab sample was collected from a 100 mm PVC inspection point, possibly part of a disused septic tank system. The liquid grab sample, identified as GW02, was collected as follows:	
	 An electronic interface probe (IP) was used to gauge the depth of any liquid in the PVC casing and the total depth. A continuous tone from the IP indicated light non- aqueous phase liquid (LNAPL) was present atop water 	
	 Using a dedicated disposal bailer a grab sample of the LNAPL and water was collected. 	
Sample handling	Soil samples were handled exclusively by an experienced LBW ep consultant, and samples were stored in glass jars supplied by the primary contract laboratory.	
	The groundwater and water / LNAPL grab samples were stored in appropriate bottles supplied by the contract laboratory.	
	Disposable nitrile gloves were worn by the field representative whilst handling samples and were replaced prior to the collection of each sample.	
Decontamination of sampling equipment	Drilling equipment and all reusable sampling equipment (including core trays) were cleaned and scrubbed in Decon-90 solution followed by a potable water rinse prior to drilling and in between sampling locations.	

Activity	Details		
Quality control duplicate and blank sampling	Two equipment rinsate blank samples were collected. Quality control duplicate and blank samples collected and tested during the intrusive investigation are provided in the chemical summary tables in Appendix H		
	Soil: Ten quality control field duplicate samples were collected during the assessment. Field duplicates were blind-coded in the field, so the duplicate sample pairs could not be identified by the laboratory. The following soil duplicate pairs were selected for analysis at the laboratories:		
	 Intra-laboratory Duplicates 		
	 Primary sample BH8-1/duplicate BH8-2 		
	 Primary sample T1-1/duplicate T1-2 		
	 Inter-laboratory Duplicates 		
	 Primary sample BH18-1/duplicate BH18-5 		
	Groundwater:		
	No groundwater grab sample duplicate was collected.		
Soil logging	Soil logging was based on field interpretation per the guidance in Standards Australia AS1726-1993 as recommended in the ASC NEPM. Soil bore logs are presented in Appendix J.		
Sample preservation	Soil and groundwater / water samples were stored under chilled conditions in a portable cooler immediately following sampling and during delivery to the laboratory.		
	Sample transport was performed in accordance with LBW ep's chain of custody procedures.		
Soil bore and groundwater grab sample bore abandonment	Soil and groundwater grab sample bores were backfilled using soil cuttings.		
Laboratory Analysis	Soil: Soil samples were dispatched to National Association of Testing Authorities (NATA) accredited laboratories Envirolab (primary laboratory) and Eurofins MGT (secondary laboratory) for chemical testing of a broad range of analytes. Soils indicating physical evidence of contamination (e.g. ash/cinders) were specifically targeted for analysis.		
	Groundwater:		
	Groundwater samples were dispatched to NATA accredited laboratory Envirolab for chemical testing of a broad range of analytes.		
	The groundwater grab sample, GW01, was analysed for the following:		
	* NEPM groundwater investigation level (GIL) Screen (TRH, phenols, PAH, OCP, PCB, phthalates, VOC, cyanide, fluoride, metals (aluminium, tin, arsenic, barium, beryllium boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, vanadium and zinc)		
	 Major ions (calcium, potassium, magnesium, sodium, chloride, sulfate and alkalinity) 		
	 Nutrients (total nitrogen, nitrite, nitrate, ammonia, TKN and total phosphorus) 		
	Sample GW01was submitted for silica gel clean-up following detection of hydrocarbons in groundwater.		
	Wastewater		
	The liquid waste sample collected from the disused septic tank, GW02, was analysed to the following:		
	TPH identification (LNAPL sample)		
	 Nutrients (total nitrogen, nitrate, ammonia, TKN and total phosphorus) 		
	 Metals (aluminium, antimony, arsenic, barium, beryllium, boron, cadmium, chromium cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, vanadium and zinc). 		

8 Beneficial Use Assessment

This Beneficial Use Assessment (BUA) has been prepared to assess the realistic current and potential future beneficial uses of groundwater at the site in the context of background groundwater quality and its impact on potential Protected Environmental Values (PEV) under the Environment Protection (Water Quality) Policy 2015 (EPP-WQ). PEVs are equivalent to beneficial uses. A summary of the assessment of beneficial uses of groundwater at the site is presented in Table 8.

This BUA considers data from the WaterConnect database search carried out during the site history assessment (see section 4.4) and results of LBW | ep's groundwater investigations, as presented in Section 11 of this report.

The BUA informs the selection of appropriate investigation criteria for the protection of identified realistic PEVs.

Table 8 Beneficial Use Assessment

Section 2		28.0
Beneficial Use	Onsite Use	Offsite Use
Aquatic Ecosystems Marine ecosystems	Likely	Likely
	The foreshore of Smith Bay borders the northern boundary of site.	The foreshore of Smith Bay borders the northern boundary of site.
	The shallow groundwater onsite, particularly at the lower elevations towards the foreshore of Smith Bay, is likely to have connection with the marine ecosystem, though the current environment and site have been highly modified/influenced by settlement, agriculture and aquaculture.	Groundwater flow onsite is inferred to be north towards Smith Bay. It is likely that there is hydraulic connection between groundwater onsite and offsite and the marine ecosystem (Smith Bay) bordering the northern boundary.
Aquatic	Unrealistic	Unrealistic
Ecosystems Freshwater aquatic	The proposed development plan does not include such uses.	The nearest water course was Smith Creek located between 20m and 100m west of site which drains into Smith Bay.
ecosystems	The groundwater grab sample had a TDS concentration of 18,000 mg/L	The water quality of Smith Creek is unknown as
0003/3/0/10	and the water well east of site had a recorded TDS concentration of 11,192 mg/L, the concentrations	are the effects of interconnection with the marine environment (tidal, groundwater, etc.) on Smith Creek.
	indicating saline groundwater. With the exception of two man made dams, there was no freshwater ecosystem on the site. From observations made onsite, at least	Although unlikely, It is possible that site
		groundwater is hydraulically connected with Smith Creek to the west of site. The inferred site groundwater flow is assumed to be north toward Smith Bay.
	one of the dams appeared to be associated with aquaculture, potentially holding seawater from or for above ground tank operations.	The onsite groundwater grab sample and surrounding licensed bores had TDS concentrations ranging from approximately 11,000 mg/L to 18,000 mg/L indicating saline conditions.
Recreation	Unrealistic	Likely
(health) Primary Contact	The proposed development plan does not include such uses.	Groundwater is not likely to be extracted for primary contact recreation use within the predominantly commercial land use area. However site groundwater is likely to drain into Smith Bay.
		A wharf capable of accommodating bulk carrier ships is proposed primarily for export of timber, however the frequency of bulk carriers docking at the wharf is proposed for only a small number of days per year. It is therefore possible people could engage in recreational activities in this

Beneficial Use	Onsite Use	Offsite Use
		area, coming into frequent direct contact with seawater (swimming, surfing etc),
Recreation	Unrealistic	Likely
(heath) Secondary Contact	The proposed development plan does not include such uses.	Groundwater is not likely to be extracted for secondary contact recreation use within the predominantly commercial land use area. However site groundwater is likely to drain into Smith Bay.
		A wharf capable of accommodating bulk carrier ships is proposed primarily for export of timber, however the frequency of bulk carriers docking at the wharf is proposed for only a small number of days per year. It is therefore possible people could engage in recreational activities in this area, coming into less-frequent contact with seawater (boating, kayaking, fishing etc.),
Recreation	Unrealistic	Likely
(aesthetic) No Contact	The proposed development plan does not include such uses.	Groundwater is not likely to be extracted offsite for passive recreation value. However groundwater is likely to drain into Smith Bay which does have passive recreational value, in that it is aesthetically pleasant.
Primary	Unrealistic	Possible but unlikely
Industries Aquaculture & human consumption	The proposed development plan does not include such uses.	Groundwater is not likely to be extracted for aquaculture and human consumption, although it is possible. It is more likely, depending on the type of aquaculture, that water would be extracted from Smith Bay.
		It is understood the neighbouring onshore abalone farm east of site extracts seawater from Smith Bay for its operation.
Primary	Unrealistic	Possible
Industries Livestock drinking water	The proposed development plan does not include such uses.	The concentrations identified onsite and from the Water Connect database search had TDS concentrations ranging from approximately 11,000 mg/L to 18,000 mg/L indicating saline conditions. It is unlikely groundwater of this quality would be extracted for livestock drinking water.
		ANZECC 2000 Table 4.3.1 Tolerances of livestock to total dissolved solids (salinity) in drinking water provides concentrations for beef cattle, dairy cattle, sheep, horses, pigs and poultry.
		The highest concentration range, before loss of production and a decline in animal condition and health would be expected was 10,000 mg/L to 13, 000 mg/L for sheep (only on lush green feed may tolerate up to 13,000 mg/L).
Primary	Unrealistic	Unrealistic
Industries Irrigation &	The proposed development plan does not include such uses.	None of the bores identified in the Water Connect database search were listed as irrigation bores.
general water use	The groundwater grab sample had a TDS concentration of 18,000 mg/L. The water well east of site had a recorded TDS concentration of 11,192 mg/L. The concentrations in both groundwater samples indicate	The onsite groundwater grab sample had a TDS concentration of 18,000 mg/L. The water well east of site had a recorded TDS concentration of 11,192 mg/L. The concentrations in both groundwater samples indicate saline groundwater.
	saline groundwater.	It is unlikely groundwater of this quality would be extracted for irrigation and general water use.
Industrial	Unrealistic	Unrealistic

Beneficial Use	Onsite Use	Offsite Use	
	Although unlikely, it is possible that groundwater could be extracted for use onsite.	Industrial use of the groundwater in surrounding areas is possible however is unlikely due the surrounding land use (agriculture) and the quality of the groundwater.	
Potable	Unrealistic	Unrealistic	
	The shallow groundwater is not suitable for potable use. It is more likely that rainwater would be harvested for potable water.	As detailed in the site history assessment, where recorded on the Water Connect database, TDS concentration in the offsite bore was approximately 11,000 mg/L. These measurement suggest regional shallow groundwater TDS concentrations exceed the palatability range fo potable use according to the Australian Drinking Water Guidelines (2011).	
	As recorded during field investigations, the groundwater grab sample had a TDS concentration of 18,000 mg/L, suggesting shallow groundwater beneath the site exceeded the acceptable TDS range for potable use according to the Australian Drinking Water Guidelines (2011).		
Maintenance of	Unrealistic	Unrealistic	
Ecosystems	There are some trees, large shrubs and smaller vegetation growing towards the northern boundary of site along the foreshore The proposed development plan does not include such uses.	A small number of mature trees are present near	
Vegetation dependence		the site and are likely to have root systems potentially accessing the shallow groundwater.	
		The majority of the vegetation onsite and	
		immediately surrounding the site has been highly modified and/or cleared from agricultural activities.	
		Vegetation is likely to have adapted to high salinity in groundwater.	

Other factors may apply to the potential for beneficial use of groundwater, for which data was not available or LBW | ep was not aware of, at the time preparing the BUA above. These factors alone, or in combination with other factors, may lead to a different outcome. Based on the above BUA, the following PEVs were considered to be current or realistic potential future uses for groundwater in the vicinity of the site:

- Aquatic ecosystems Marine Ecosystems
- Recreation Primary and Secondary Contact
- Recreation Aesthetic
- Primary Industries Aquaculture and human consumption
- Primary Industries Livestock drinking water

See Section 9.3 for rationale for adopted groundwater chemical screening criteria.

9 Screening Criteria

The proposed redevelopment of the site will include the construction of a deep water wharf with associated on-shore levelled tiers over an approximate 8 ha area for storage of logs, access roads and other associated amenities.

9.1 Framework

LBW | ep assessed for the presence or absence of site contamination in soils and a groundwater grab sample in consideration of criteria relevant to commercial/industrial land uses.

The ASC NEPM provides a nationally consistent framework for assessing the presence and significance of site contamination in soil and groundwater. The ASC NEPM methodology is based on assessing the potential for an unacceptable risk to human health or the environment by comparing concentrations of chemical substances to conservative, generic investigation levels for various environmental settings and land use scenarios.

Investigation levels are defined in the ASC NEPM as... concentrations of a contaminant above which further appropriate investigation and evaluation will be required. They are not clean up or response levels. A response level is defined as... the concentration of a contaminant at a specific site based on a site assessment for which some form of response is required to provide an adequate margin of safety to protect public health and/or the environment.

The ASC NEPM health investigation levels (HILs) (or health screening levels (HSLs) for petroleum hydrocarbon) are based on conservative assumptions around providing protection to a young child living or playing on the site and subjected to exposure to contaminated soils. The most stringent HILs are assigned to sensitive land uses such as residential, child care centres and primary schools. Where the land use provides for reduced access to soils, or reduced time in the setting for a child (e.g. high density residential apartments or an industrial site), higher HILs are set respectively in the ASC NEPM.

In the event that an investigation level is exceeded at a site, the nature of the appropriate response is typically determined by site-specific environmental or human health risk assessment.

9.2 Soil Assessment Criteria

9.2.1 Human Health and Environmental Screening Guidelines

For the purposes of this assessment LBW | ep has referenced the following:

- ASC NEPM HILs for a Commercial/Industrial exposure setting (HIL D);
- ASC NEPM HSL D for Vapour Intrusion from a soil source between 0-1 mBGL (coarse grained soils), and
- ASC NEPM Management Limits for TPH fractions F1-F4 in soil commercial and industrial

The adopted HILs and HSLs are shown on chemical summary tables in Appendix H.

9.2.2 Ecological Screening Criteria

Chemical contaminants may adversely affect the ecological values of a site and the levels considered suitable based on human health considerations may not afford protection to the local ecology. In order to consider the potential for toxicity to sensitive plants and animals, contaminant concentrations have also been compared to ecological investigation levels (ElLs) and ecological screening levels (ESLs) presented in the ASC NEPM. These values are typically only applicable to the top 2 metres of the soil profile where plants (and to a lesser degree animals) are likely to interact with the soil.

Several ElLs were derived from site specific conditions as recommended in the ASC NEPM. The methodology for the derivation of site specific ElLs assumes that an ecosystem is adapted to the ambient background concentration (ABC) for the locality and that only adding contaminants over and above the ABC have an adverse effect.

Added contaminant limits (ACLs) are calculated based on the soil characteristics of pH, cation exchange capacity (CEC) and clay content. Empirical relationships that can model the effects of these soil properties on toxicity are used to develop soil-specific values relating to biological availability.

Sample BH11-03 was collected from 0.6-0.75 mBGL, BH20-04 was collected from 1.1-1.3 mBGL. Sample BH11-03 was described as pale orange brown silty clay of medium plasticity. Sample BH20-04 was described as green grey clay with high plasticity. These samples were considered representative of background site soils.

To determine the appropriate ACL, soils from location BH11-03 and BH20-04 were selected for testing of percent iron, clay percentage, cation exchange capacity (CEC), total organic carbon (TOC) and pH. Using these soil parameters, the ACL was derived for chromium, copper, lead, nickel and zinc using the ASC NEPM toolbox ElLs calculation spreadsheet.

The completed calculation spreadsheets and output tables, along with adopted EILs and ESLs, are shown with the chemical data summary tables in Appendix H.

9.2.3 ASC NEPM Management Limits for Soils

Section 2.5 in ASC NEPM Schedule B (1) – Guideline on Investigation Levels for Soil and Groundwater, includes physical and aesthetic 'management limits' for petroleum hydrocarbon compounds. These limits reflect potential for adverse effects to exist beyond typical health and ecological concerns, including free phase formation, fire and explosive hazards, effects on buried infrastructure and aesthetic considerations. These values provide interim screening levels as Tier 1 guidance for residual petroleum hydrocarbon contamination and their application requires consideration of site specific factors such as the depth of building basements and services or for residual contamination to be re-excavated in the use of the land, in order to determine the maximum depth of application of these limits.

An exceedance means there is a potential for acute hazards to exist that may warrant remediation, even if chronic exposure risks are determined to be acceptable.

9.2.4 Soil Disposal Criteria

In the event that in-situ soils, stockpiled soils or fill materials need to be disposed offsite, chemical concentrations in the soils need to be assessed against applicable soil disposal criteria.

The criteria used to assess the suitability of soils for off-site disposal were those set in EPA information sheet Current Criteria for the Classification of Waste including Commercial and Industrial Waste (Listed) and Waste Soil, dated March 2010.

The soil classifications, listed by severity of contamination from lowest to highest, are:

- Waste Fill (WF);
- Intermediate Waste Soil (IWS); and
- Low-Level Contaminated Waste (LLCW).

Maximum permissible chemical concentrations for these soil classifications are collectively referred to as the soil criteria, and are presented in soil chemical data tables in Appendix J.

In addition to chemical content, consideration was given to the physical requirements of WF as defined in the Environment Protection Regulations 2009. "Waste Fill" is defined as waste containing clay, concrete, rock, sand, soil or other inert mineralogical matter in pieces not

exceeding 100 mm in length (but does not include waste consisting of or containing asbestos or bitumen).

The SA EPA accepts use of the 95% Upper Confidence Level (UCL) about the mean for establishing statistical contaminant concentration average for comparison to disposal criteria. However, for the 95% UCL to apply the data set must be reviewed for potential hotspots of contamination via the following additional criteria:

- maximum concentration less than 250% of the chemical criterion; and
- standard deviation less than 50% of the chemical criterion.

Deviation from these cut-off criteria may indicate the presence of anomalous or isolated hot spot concentrations, which may require segregation for appropriate risk mitigation.

9.3 Groundwater Assessment Criteria

9.3.1 Human Health and Environmental Screening Guidelines

While the ASC NEPM provides the framework for assessing groundwater contamination, protection of groundwater in South Australia is regulated by the EP Act, and the EPP-WQ, which came into operation on 1 January 2016.

The purpose of the EPP-WQ is to protect and maintain beneficial uses of water resources in South Australia by regulating discharges to those water sources. The EPP-WQ assigns Protected Environmental Values (PEVs) for all inland, surface waters and groundwater.

The EPP-WQ refers to the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 2000) as part of the guidance regarding the General Environmental Duty. These "trigger values" indicate where the receiving environment is potentially at risk of being harmed and where a site-specific investigation may be required to assess the risk and/or evaluate options for environmental performance improvement. As such, the exceedance of a trigger value does not mean that harm has occurred or that remediation or management is required, rather that further site specific assessment may be required.

The default PEVs, or environmental values of waters as set out in the WQP include the following:

- Aquatic ecosystems;
- Recreation and aesthetic (primary and secondary contact and aesthetics);
- Drinking Water;
- Primary Industries
 - Irrigation and general water uses
 - Livestock drinking water
 - Aquaculture and human consumption of aquatic foods

For the purpose of this assessment, and as a result of the BUA (see section 8), Table 9 sets out the screening criteria that were applied to make an initial assessment of the potential realistic beneficial uses of the shallow groundwater at and in the immediate vicinity of the site.

Table 9 Summary of Groundwater Assessment Criteria

PEV		Assessment Criteria
Aquatic Ecosystems – marine ecosystems	Primary Criteria:	Australian and New Zealand Environment and Conservation Council (ANZECC) (2000) – Marine trigger values for 95% protection of marine water species
Recreation & Aesthetics (Health)	Primary Criteria:	National Health and Medical Research Council (NHMRC) (2008) Guidelines for Managing Risks in Recreational Water ¹
Recreation & Aesthetics (Aesthetics)	Primary Criteria:	NHMRC (2008) Guidelines for Managing Risk in Recreational Water
Primary Industries – Aquaculture and human consumption of aquatic foods	Primary Criteria	Australian and New Zealand Environment and Conservation Council (ANZECC) (2000)
Primary Industries – Livestock drinking water quality	Primary Criteria	Australian and New Zealand Environment and Conservation Council (ANZECC) (2000)

In addition to the above groundwater assessment criteria for the protection of Environmental Values, the following assessment criteria were also applied for the assessment of onsite vapour intrusion risks:

ASC NEPM Groundwater HSLs for vapour intrusion (TRH and BTEX)

The adopted assessment criteria are shown on water chemical summary tables in Appendix I.

10 Soil Results

The following section summarises the field observations and results of the laboratory soil testing.

Grid based and targeted soil sampling locations are presented on Figure 2 in Appendix A. Tabulated laboratory soil testing results are presented in Appendix H.

Detailed descriptions of the in-situ materials encountered and depth intervals identified are summarised in the soil borehole logs presented in Appendix J (grid and targeted soil bores). Photographs of the site are presented in Appendix D.

10.1 Soil Lithology

The site surface generally consisted of a shallow reworked natural layer including various sand or clay mixtures. Approximately half of the grid based soil bore locations intersected natural soils, generally consisting of various clay and silt mixtures, from the surface.

The underlying natural soils were generally described as medium to high plasticity clays with various calcareous, silt and sand inclusions. Sandstone gravels and sandstone was generally encountered with depth.

Field observations indicated that the site soils were free from any physical evidence of contamination.

10.2 Soil Analytical Results

An overview of the soil chemical testing results is provided below. Tabulated chemical summary tables are presented against human health and ecological screening criteria and soil disposal criteria in Appendix H. Laboratory certificates of analysis are presented in Appendix K.

A total of 26 grid based and six targeted soil samples were selected for chemical testing at NATA certified laboratories. A broad range of chemicals were selected for testing per Table 5 and Table 6 in Section 7.

Concentrations of all analytes in samples tested were below the laboratory limit of reporting (LOR) and/or the adopted HIL/HSLs and ESL/EILs and were compliant with the physical and chemical requirements of Waste Fill.

One sample collected at soil bore BH13 from observed potential acid sulfate soil (PASS) at a depth of 1.65-1.8 mBGL (black organic material having been noted) was analysed for Suspension Peroxide Oxidisable Combined Acidity and Sulfur (SPOCAS) suite.

The results of analysis suggest that the soil is not acid sulfate soil. Stronger evidence of PASS was not noted elsewhere during soil bore drilling.

11 Groundwater Results

11.1 Groundwater and Liquid Waste Sample Summary

Groundwater Grab Sample

On 12 October 2016 a groundwater grab sample was collected from borehole BH13, located towards the northern boundary of site. The depth to water intersected during drilling was measured at 1.65 mBGL. The total depth of the soil borehole was 2.25 mBGL. Groundwater recharge into the borehole was slow.

Water quality parameters could not be measured due to the sampling method adopted.

Liquid Waste - Septic

A 100mm PVC riser and concrete plinth was identified uphill south of the site shed. The structure was determined to be part of a disused septic tank. The SWL inside the casing was gauged using an interface probe (IP) and LNAPL was recorded atop water at a depth of 6.165 metres below top of casing (mBTOC). The total depth measured to the presumed base of the septic tank was 6.8 mBTOC. The thickness of LNAPL could not be recorded with the IP due to malfunction of the probe (unable to correctly identify the top of water level beneath the LNAPL). A grab sample using a transparent disposable bailer indicated that the LNAPL was approximately 3 cm to 5 cm thick. A sample of LNAPL and underlying wastewater was collected for laboratory testing.

No contouring of groundwater elevation and interpreted groundwater flow direction at the site could be completed from one groundwater grab sample. The expected groundwater flow beneath site was north towards Smith Bay.

11.2 Analytical Results

Chemical data summary tables are presented in Appendix I and include comparison of results against the adopted screening criteria identified in Section 8 (BUA) and Section 9.3 (Groundwater Assessment Criteria).

Concentrations exceeding a relevant guideline trigger value have been highlighted in the data tables. Where concentrations exceed more than one of the trigger values, the concentration has been highlighted with the value with the highest investigation level.

Laboratory certificates and chain of custody documentation are presented in Appendix L.

The following section summarises the results of analysis of the groundwater grab sample, GW1. The water sample, GW2, was confirmed to be liquid waste in a disused septic tank (south of the current shed onsite). Given the liquid is stored in a septic tank comparison to groundwater investigation criteria is not appropriate, however, the results for GW2 sample analysis have been tabulated against the groundwater investigation criteria to assess potential impact should the septic tank be found to have leaked or overflowed.

11.2.1 Heavy Metals

Groundwater Grab Sample GW1

Exceedances were as follows:

 Iron and lead concentrations exceeded the ANZECC aquaculture and human consumption for saltwater production criteria.

For the purpose of potential site groundwater disposal into the marine (Smith Bay) environment, the following exceedances were as follows:

 Cobalt and copper concentrations exceeded the ANZECC aquatic marine ecosystems criteria.

Liquid Waste – Septic water sample GW2

If the septic tank was found to leak/overflow and impact groundwater, the following exceedances might be applicable:

- Arsenic, iron, lead and manganese concentrations exceeded the ANZECC aquaculture and human consumption for saltwater production criteria;
- Cobalt and copper concentrations exceeded the ANZECC aquatic marine ecosystems criteria;
- Iron concentrations exceeded the NHMRC recreation aesthetic criterion;
- Arsenic concentrations exceeded the NHMRC recreation heath criterion.

11.2.2 TRH

Groundwater Grab Sample GW1

Concentrations of TRH were reported in GW1. Retesting of these samples following a silica gel clean-up was carried out. This resulted in the concentrations reducing to below the laboratory's LOR. Silica gel clean-up removes the polar hydrocarbons present naturally in the environment such as humic acids, leaving behind petroleum hydrocarbons if present. This silica gel clean-up showed that no petroleum hydrocarbons were present.

<u>Liquid Waste - Septic GW2</u>

Elevated concentrations of TPH were reported in GW2 which was expected given LNAPL was present in contact with the water.

The sample was submitted for TPH identification. Results were compared to Envirolabs reference library and matched to diesel.

11.2.3 Nutrients

Groundwater Grab Sample GW1

Nitrite concentrations exceeded the ANZECC aquaculture and human consumption for saltwater production criterion.

Liquid Waste - Septic GW2

If the septic tank was found to leak/overflow, the following exceedances would be applicable:

Ammonia concentrations exceeded the ANZECC aquatic marine ecosystems criterion.

11.2.4 Sulphate

GW1 had concentrations of sulphate exceeding the NHMRC recreational aesthetic criterion.

11.2.5 TDS

GW1 had TDS concentration of 18,000 mg/L and was indicative of saline conditions. It exceeded the ANZECC livestock drinking water tolerances for beef, dairy, sheep, horses, pigs and poultry for loss of production and decline in animal condition and health.

11.2.6 Non-detectable Contaminants

The remaining constituents of the extensive analytical suite for the groundwater grab sample, GW1, had concentrations below the laboratory LOR. These included:

- PAH
- OCPs
- PCBs
- VOCs
- Phenols

12 Soil Data Validation

The relative percentage difference (RPD) for a pair of duplicate concentrations was calculated using the formula:

RPD (%) =
$$100(x1 - x2) / X$$

where x1, x2 = duplicate results and X = mean of duplicate results.

According to the ASC NEPM,

- typical RPD values for soils range from ±30;
- a soil RPD within the range of -30% to 30% is considered to show acceptable agreement and, conversely, data is considered to have relatively poor agreement where a RPD is outside this range.

Generally higher RPD values occur for organic compounds than for metals and where low concentrations of an analyte are recorded.

The results of internal laboratory quality control procedures are provided within the laboratory certificates in Appendix K. The acceptance criterion for internal laboratory replicates is set at an RPD of -50% to 50%. Laboratory recoveries should be in the range 70% to 130%.

Table 10 indicates conformance to specific QA/QC requirements for soil data. Duplicate sample, and equipment blank results are presented in Appendix H.

Table 10 Soil Data Validation

QC Aspect	Outcome	Comment
Chain of custody documentation completed	Yes	All samples were transported under strict LBW ep chain of custody procedures and signed chain of custody documentation is included in Appendix J.
Samples delivered to laboratory within sample holding times and with correct preservative	Yes	All samples were delivered to the laboratories in laboratory supplied containers and within recommended laboratory holding times with the exception of the following hold time exceedances: pH SPOCAS
All analyses NATA accredited	Yes	Envirolab and ALS were NATA accredited for all the analyses performed.
Required number of sample duplicates and blanks collected	Mostly	A total of 32 primary samples, 1 inter-laboratory duplicate sample and 2 intra-laboratory duplicate samples were analysed throughout the site works. This generally complied with the minimum duplicate ratio of 1 duplicate for 20 primary samples recommended in AS 4482.1 2005.
		Two rinsate blank samples were also collected. Both samples recorded parameter concentrations below the LOR.
Soil QA/QC samples reported RPDs within limits recommended by the	Most	Many of the RPD values could not be calculated due to both the primary and secondary concentrations being below the laboratory PQL.
ASC NEPM		Intra-laboratory RPDs
		The intra-laboratory RPDs for zinc (111%), moisture (42%) and ammonia (31%) exceeded the recommended limit of 30%.
		Inter-laboratory RPDs
		The inter-laboratory RPDs for lead (40%), carcinogenic PAHs (82%) and sulphate (147%) exceeded the recommended RPD limit of 30%
		Many RPDs were unable to be calculated due to one or both samples being below laboratory limits.
		RPDs not within +/-30% were likely to be due to the heterogeneous distribution and low concentrations of analytes in soil as there was no evidence in the data of a systematic laboratory or sampling error.
		Overall the analyte pair RPD results indicated good data correlation between the primary results and duplicate results.
Acceptable laboratory QC results	Mostly	The majority of the laboratory RPD values for were within the appropriate limits except:
		 spike % recovery in three samples for iron, phosphorus, nitrate, iron and molybdenum.
		ALS did not report any laboratory RPD exceedances.

12.1 Groundwater Data Validation

The relative percentage difference (RPD) for a pair of duplicate concentrations was calculated using the formula:

RPD (%) =
$$100(x1 - x2) / X$$

where x1, x2 = duplicate results and X = mean of duplicate results.

According to the SA EPA,

- typical RPD values for groundwater samples should range from ±20;
- a groundwater RPD within the range of -20% to 20% is considered to show acceptable agreement and, conversely, data is considered to have relatively poor agreement where a RPD is outside this range.

Generally higher RPD values occur for organic compounds than for metals and where low concentrations of an analyte are recorded.

The results of internal laboratory quality control procedures are provided within the laboratory certificates in Appendix D. The acceptance criterion for internal laboratory replicates is set at an RPD of -50% to 50%. Laboratory recoveries should be in the range 70% to 130%.

Table 11 indicates conformance to specific QA/QC requirements for groundwater data.

Table 11 Groundwater Data Validation

QC Aspect	Outcome	Comment
Chain of custody documentation completed	Yes	All samples were transported under strict LBW ep chain of custody procedures and signed chain of custody documentation is included in Appendix J.
Samples delivered to laboratory within sample holding times and with correct preservative	Yes	All samples were delivered to the laboratories within the sample holding times.
All analyses NATA accredited	Yes	Envirolab were NATA accredited for all the analyses performed.
Required number of sample duplicates and blanks collected	No	No duplicate sample was collected of the groundwater grab sample.
Acceptable laboratory QC results	Mostly	The majority of the laboratory RPD values for were within the appropriate limits except:
		 spike % recovery for OCPs, PCBs and TRH

In summary, LBW | ep considered the results for the QA/QC processes and testing information provided appropriate confidence the soil and groundwater data could be relied upon for the purpose of this assessment.

13 Discussion

13.1 Soil Contamination

As there were no exceedances of the selected HILs and EIL/ESLs, site soils were considered to pose no unacceptable risk to the proposed commercial/industrial land use and are suitable for retention on site without further management.

Soils within the assessment area were compliant with the physical and chemical requirements of Waste Fill should disposal of excess spoil be required during development.

13.2 Groundwater

13.2.1 Groundwater Grab Sample

- Several analytes including metals (cobalt, copper, iron and manganese), sulphate, nitrite and TDS exceeded one or more of the adopted screening criteria. None of the exceedances were applicable to the proposed industrial use of the site. The BUA identified the sea (Smith Bay), immediately adjacent to site, as a possible receptor via discharge of site groundwater. For this reason the following offsite environmental values were considered possible, (though unlikely): Aquatic ecosystems Marine Ecosystems
- Recreation Primary and Secondary Contact
- Recreation Aesthetic
- Primary Industries Aquaculture and human consumption

It is unlikely groundwater would be extracted and used for aquaculture and human consumption for marine production at and/or near the site. Source water is likely to be sought directly from the ocean bordering the northern boundary of site.

The use of site groundwater for livestock drinking water was considered unlikely given the TDS concentrations. Given the high TDS concentrations in groundwater, livestock (sheep) could potentially tolerate the levels for short periods if introduced gradually (ANZECC 2000), given this any extraction of groundwater would be minimal and would not be expected to influence hydraulic flow of groundwater under the site.

There was no evidence from the site soil assessment that significant or unacceptable soil contamination was present in soils to be a potential onsite source of groundwater contamination.

The groundwater grab sample provided a snapshot in time of the water quality at GW1, located towards the foreshore of Smith Bay and did not take into consideration any local and regional naturally occurring background concentrations.

Concentrations of metals, sulphate and TDS that exceeded one or more of the environmental values, aquaculture and human consumption, aquatic marine ecosystems and/or livestock drinking water criteria, would require additional assessment specific to the environmental value and the specific area to determine if the water quality, represented by a grab sample towards the foreshore, was suitable for these uses or not. Assessment would need to take into account the numerous uncertainties associated with the derivation and application of the guidelines.

13.2.2 Septic

The liquid waste septic sample, GW2, was compared to the adopted groundwater screening criteria to assess for impact that might occur if the septic tank was found to be leaking or overflow. At the time of this site investigation there was no reason to believe this was the case,

and the exceedances highlighted in Section 11 and summarised on the chemical summary tables in Appendix I are for comparison only and not applicable to the BUA (Section 8).

LNAPL was identified in the septic tank and laboratory testing confirmed it to be diesel. KIPT confirmed this was a disused septic tank and therefore it was determined that site contamination did not exist that threatened or had caused harm to groundwater and it was deemed not necessary to notify SA EPA under section 83A of the Environment Protection Act 1993.

13.3 Conceptual Site Model

For an unacceptable risk to human health or the environment to exist relative to site contamination, the following must be satisfied:

a SOURCE of contamination of sufficient toxicity to cause harm must be present;

AND

a complete PATHWAY must exist between the source of contamination and a receptor;

AND

a RECEPTOR must be present with potential to be exposed.

It follows that where the source is of insufficient toxicity OR there is no complete exposure pathway OR there is no receptor, that unacceptable risk is not evident.

Toxicity

Chemical results suggest the site soils are suitable to be retained on site for commercial/industrial land use and do not pose an unacceptable human health or ecological risk to future site users.

Exposure Pathways

Potential sources identified in LBW | ep's site history are included in table 12 below to evidence they have been considered. Following the DSI results, LBW | ep have updated the risk of exposure/complete pathway to receptor rating.

Toxicity to a receptor may be realised via acute (short-term) or chronic (long-term) exposure.

Based on the proposed industrial land use onsite and the existing and likely offsite beneficial uses of groundwater, potential onsite and offsite receptors include:

- Future industrial workers;
- Future maintenance workers undertaking subsurface excavation works; and
- Construction workers undertaking subsurface excavation works during site development;
- Offsite users of extracted groundwater
- The marine environment (human use and ecological) potentially receiving site groundwater.

Identified potential sources of onsite contamination may include:

- uncontrolled fill material across the majority of the site
- soil, groundwater and vapour impacts relating to LNAPL within the disused septic tank
- groundwater impacts relating to wastewater within the disused septic tank

- soil impacts relating to historical application of agricultural chemicals to surface soils
- soil impacts and groundwater impacts relating to impacts from food production and animal and plant product processing – fish processing

The proposed industrial development land use may generally include:

- several level tiers / terraces across the site
- access roads
- associated amenities

Table 12 provides a summary of exposure risks to onsite and offsite receptors relative to the PCA or environmentally significant activity identified at the site during the site history update and based on results of the DSI.

Table 12 Conceptual Site Model Development

PCA or Significant Activity	Media contaminated and extent - Source	Receptor	Pathway	Risk of Exposure / Complete Pathway to Receptor
Fill or Soil Importation	Soll	Future industrial workers children	Dermal contact, ingestion, inhalation of dust	Negligible
	No/negligible fill was identified during the soil assessment. Reworked natural soils identified at nearly half of the grid based soil borehole locations. No volatile contaminants noted to date.			Concentrations in all samples analysed for metals, pH, OCPs, OPPs, TRH, BTEX, PAHs, herbicides, nitrate, nitrite, ammonia, phosphorus, sulphate, chloride, termiticides, phenols and PCBs, were below the adopted health and ecological investigation/screening assessment levels.
		Future maintenance workers	Dermal contact, ingestion , inhalation of dust	Negligible
				Concentrations in all samples analysed for metals, pH, OCPs, OPPs, TRH, BTEX, PAHs, herbicides, nitrate, nitrite, ammonia, phosphorus, sulphate, chloride, termiticides, phenols and PCBs, were below the adopted health and ecological investigation/screening assessment levels.
		Construction workers (during development works)	Dermal contact, ingestion, inhalation of dust	Negligible Concentrations in all samples analysed for metals, pH, OCPs, OPPs, TRH, BTEX, PAHs, herbicides, nitrate, nitrite, ammonia, phosphorus, sulphate, chloride, termiticides, phenols and PCBs, were below the adopted health and ecological investigation/screening assessment levels.
		Ecological (plants on developed site)	Plant uptake	Negligible
				No contaminant concentrations identified above ElLs/ESLs.
	Groundwater There was no evidence from the site soil assessment that significant or unacceptable soil contamination was present in soils to be a potential onsite source of groundwater contamination.	Environmental values identified in the BUA, Section 8.	Groundwater extraction for potential livestock drinking water and aquaculture and human consumption of aquatic foods and marine ecosystems and recreational through potential	Negligible
				Unlikely contaminant source for groundwater contamination.
				Proposed industrial use may potentially seal majority of area

		3/		
PCA or Significant Activity	Media contaminated and extent - Source	Receptor	Pathway	Risk of Exposure / Complete Pathway to Receptor
			groundwater discharge into the ocean (Smith Bay).	
Impacts relating to possible release of diesel from disused septic tank	Soil	Future industrial workers	Dermal contact	Negligible
	No soil contamination detected in T1, located approximately ten metres to the north of the septic tank.			Soil samples analysed approximately 10 to the north had concentrations of TRH and BTEXN below the adopted health and ecological investigation/screening assessment levels. There is potential for TRH impacts closer to the source, however these are likely to be at depth and easily managed during site development (removal of septic).
		Future maintenance workers	Dermal contact	Low
				Soil samples analysed approximately 10 to the north had concentrations of TRH and BTEXN below the adopted health and ecological investigation/screening assessment levels. There is potential for TRH impacts closer to the source.
		Construction workers (during development works)	Dermal contact	Low
				Soil samples analysed approximately 10 to the north had concentrations of TRH and BTEXN below the adopted health and ecological investigation/screening assessment levels. There is potential for TRH impacts closer to the source.
	Groundwater	Human health on and off site	Contaminant solute migration and groundwater extraction for use.	Negligible
	In the event that soil contamination had occurred, contaminants may have impacted shallow groundwater.			LNAPL volume likely to be low and appeared contained.
				Use of groundwater is unlikely due to high salinity of groundwater in this area. The distance from the source to offsite receiving environments would likely allow for natural attenuation of TRH, at least to some degree.

PCA or Significant Activity	Media contaminated and extent - Source	Receptor	Pathway	Risk of Exposure / Complete Pathway to Receptor
				The groundwater grab sample GW1, inferred to be down hydraulic gradient had TRH concentrations less than the laboratory LOR.
		Ecological (deep rooted plants)	Contaminant solute migration.	Negligible
				No to minor deep rooted plants proposed for the industrial land use.
	Vapour	Human health on and off	Vapour emission from	Negligible
	Soil contamination has not been detected and impacted liquid is retained in a septic tank.	site	hydrocarbon migrating with groundwater transmitting through soil.	Migration potential is low as no suggestion of loss of LNAPL.
Application of agricultural chemicals / agricultural activities and fertiliser application for lawns and gardens (including former primary school use)	Soil	Human health and ecological on site	Dermal contact, ingestion, plant uptake	Negligible
	Land was thought to be generally vacant or used for grazing and broad acre farming prior to development.			Contaminant type, likely extent and concentration were unlikely to pose significant risk to any receptor.
	In the event that chemicals were used during this time, chemicals were likely to have been applied in low rates over large areas, and as such would likely to be contained to surficial soils.			No soil or groundwater contaminant concentrations identified above the applicable assessment criteria
	Contaminant type and likely concentration did not suggest significant potential for groundwater contamination or vapour generation.			
	Groundwater			
	Potential for some minor nutrient leaching to groundwater, particularly nitrate, through application of fertilisers.			
Food production and	Soil	Human health on site	Contaminant solute migration and groundwater extraction for use.	Negligible
animal and plan product processing – fish processing	Land was thought to be used for on-shore abalone farming. It is understood the process was in above ground tanks.			Concentrations in all samples analysed for metals, pH, OCPs, OPPs, TRH, BTEX, PAHs, herbicides, nitrate, nitrite, ammonia, phosphorus, sulphate, chloride, termiticides, phenols and PCBs, were below the adopted

PCA or Significant Activity	Media contaminated and extent - Source	Receptor	Pathway	Risk of Exposure / Complete Pathway to Receptor
	The soil assessment did not identify any contamination from potential impacts associated with maintenance of infrastructure and aquaculture			health and ecological investigation/screening assessment levels.
		Ecological (deep rooted plants)	Contaminant migration	Negligible
	operations.			Concentrations in all samples analysed for metals, pH, OCPs, OPPs, TRH, BTEX, PAHs, herbicides, nitrate, nitrite, ammonia,
	Groundwater			phosphorus, sulphate, chloride, termiticides, phenols and PCBs, were below the adopted health and ecological investigation/screening assessment levels.
	Potential impacts from source water, additives, effluent water and drainage from aquaculture activities.			

14 Conclusions and Recommendations

LBW Environmental Projects (LBW | ep) was commissioned by Kangaroo Island Plantation Timbers Pty Ltd (KIPT) to undertake a Preliminary Site Investigation (PSI) for the site located at Allotments 51 and 52 North Coast Road, Wisanger, South Australia (the site). The PSI comprised a desktop site history and a preliminary assessment of site soils and groundwater.

The objectives of the site history were to:

The objectives of the PSI - Site History were to:

- Research current and historical land uses and associated activities undertaken at or adjacent to the site to identify whether Potentially Contaminating Activities (PCAs) may have occurred on or near the subject site; and
- Provide a current desktop assessment of risk with respect to the likelihood that PCAs could have caused site contamination, with regards to the proposed commercial land use.

Based on the desktop research and a site inspection, LBW | ep prepared a preliminary CSM for PCAs that were undertaken or inferred to have occurred at and near the subject site. The conclusions of the site history were as follows:

- One PCA was identified or inferred to have occurred on-site with the corresponding risk level assigned:
 - Fill or soil importation –MODERATE
- One off-site PCAs was identified or inferred to have occurred in the area surrounding the site, including:
 - Fill or soil importation Negligible

The objectives of the intrusive assessment were to:

- Characterise the contamination status of site soils in consideration of the PCAs and areas of interest identified in the Site History Review;
- Assess whether site soils were suitable for the proposed commercial land use, or whether remediation or management might be needed to achieve the desired outcome;
- Develop preliminary advice on waste classification for soils which may become surplus to needs during future redevelopment of the site, and
- Assess the groundwater contamination status with respect to the proposed commercial land use.

Soils

Based on the qualitative risk assessment for the redevelopment project, there is negligible potential for unacceptable risk to human health and ecological receptors to occur. Soils are suitable to be retained on site for commercial/industrial land use.

No specific remediation or management is required to make the site suitable for the proposed development.

Groundwater

There is no unacceptable risk to future site users from known conditions of the shallow groundwater as there is no confirmed site contamination present and no realistic pathways of exposure to the groundwater for the proposed land use.

Disused Septic Tank

LBW | ep recommends that before removal of the disused septic tank the contents be pumped out by a licensed waste contractor. There is potential for environmental harm to occur if the tank removal process is not carefully managed. Once the tank is removed it should be inspected for any evidence of leakage and the underlying soil be inspected for visual and olfactory signs of contamination. Validation samples should collected from the tank pit soils and tested for chemicals of potential concern.

15 Limitations

Scope of Services

This environmental site assessment report ("the report") has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between KIPT and LBW Environmental Projects (LBW | ep) ("scope of services"). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

Reliance on Data

In preparing the report, LBW | ep has relied upon data, surveys, analyses, designs, plans and other information provided by KIPT and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, LBW | ep has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. LBW | ep will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to LBW | ep.

Desktop Environmental Conclusions

In accordance with the scope of services, LBW | ep has relied upon the data and has conducted desktop site history research in the preparation of the report. The nature and extent investigation conducted is described in the report.

No desktop investigation, no matter how thorough, can eliminate the possibility that not all potentially contaminating activities were identified or provide sufficient confidence to determine the suitability of a site for a given use. The conclusions are based only upon the data and information available to LBW | ep at the time of preparing this report.

Environmental Conclusions

In accordance with the scope of services, LBW | ep has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentration of contaminants, can change with time.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

Report for Benefit of KIPT

The report has been prepared for the benefit of the stated party only. LBW | ep assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of LBW | ep or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

Other Limitations

LBW | ep will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

Appendix A

Figures

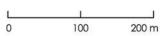
Smith Bay, Kangaroo Island Preliminary Site Investigation

For

KIPT

FIGURE 2 Soil Borehole Sample Location Plan

Smith Bay, Kangaroo Island Preliminary Site Investigation


For

KIPT

LEGENDApproximate site boundary

- Geotechnical and environmental soil bore locations
- Environmental soil bore locations
- Targeted soil bore locations

SCALE

Job Number: 150738-01

Drawn: H Custance

Checked: B Fitzgerald

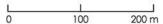
FIGURE 3

Water Sample Location Plan

Smith Bay, Kangaroo Island Preliminary Site Investigation

KIPT

LEGEND


Approximate site boundary

Groundwater grab sample location

Approximate location of current septic

GW2 Location of disused septic tank

SCALE

Job Number: 150738-01 Drawn: H Custance

Checked: B Fitzgerald

Appendix B

Certificate of Title and Site History

Product
Date/Time
Customer Reference

Register Search 31/08/2016 02:34PM

 Customer Reference
 150738-01

 Order ID
 20160831009163

Cost \$27.75

The Registrar-General certifies that this Title Register Search displays the records maintained in the Register Book and other notations at the time of searching.

Registrar-General

South Australia

Certificate of Title - Volume 6127 Folio 273

Parent Title(s) CT 5870/746

Dealing(s) Creating Title RTC 12040789

Title Issued 17/12/2013

Edition 2

Edition Issued 24/04/2014

Estate Type

FEE SIMPLE

Registered Proprietor

CINEREA PTY. LTD. (ACN: 167 774 058) OF SUITE 9/75A ANGAS STREET ADELAIDE SA 5000

Description of Land

ALLOTMENT COMPRISING PIECES 51 AND 52 DEPOSITED PLAN 92343 IN THE AREA NAMED WISANGER HUNDRED OF MENZIES

Easements

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED A ON DP 92343 TO DISTRIBUTION LESSOR CORPORATION (SUBJECT TO LEASE 8890000) (TG 8363477)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED B ON DP 92343 (RTC 12040789)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED J ON DP 92343 (RTC 9234708)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED C ON DP 92343 FOR THE TRANSMISSION OF ELECTRICITY BY UNDERGROUND CABLE (RTC 12040789)

Schedule of Dealings

NIL

Notations

Dealings Affecting Title

Land Services Page 1 of 2

Product
Date/Time
Customer Reference
Order ID

Cost

Register Search 31/08/2016 02:34PM 150738-01

20160831009163 \$27.75

NIL

Priority Notices

NIL

Notations on Plan

NIL

Registrar-General's Notes

NIL

Administrative Interests

NIL

* Denotes the dealing has been re-lodged.

Land Services Page 2 of 2

Land Ownership History KIPT Smith Bay PSI—Baseline Site Assessment 150738-01

17.12.2013	New title to Quentin John Anderson
02.04.2014	Transfer to Cinera Pty Ltd
	1
CT 5870/746	
Portion of Sec	tion 338 in the Hundred of Menzies, County of Carnarvon
18.04.2002	New title to Kandaroo Island Abalone Pty Ltd
17.01.2012	Transfer to Quentin John Anderson
21.11.2013	Application for Deposit of Land Division
Cancelled to	CT 6127/272 and 6127/273 (site)
CT 5584/238	
Section 338 in 09.10.1993	the Hundred of Menzies, County of Carnarvon
09.10.1993 26.09.2001	New title to Wille Dirk Smith Transfer to K.I Seafood Marketing Pty Ltd
19.04.2002	Application for Deposit of Land Division
	Transfer to Kangaroo Island Abalone Pty Ltd
Cancelled to	CT 5870/746 (site) and CT 5890/747
	*
CT 5486/765	
Section 338 in 30.12.1997 13.10.1998	the Hundred of Menzies, County of Carnarvon New title to Willie Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement)
Section 338 in 30.12.1997 13.10.1998	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement)
30.12.1997 13.10.1998 Cancelled to	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement)
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement)
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancell	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement)
Section 338 in 30.12.1997 13.10.1998 Cancelled to 1 CT 5248/901 Section 338 in 13.10.1998	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to Cancelled to 10.1016 CT 5248/901 Section 338 in 17.02.1995	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzies, County of Carnarvon
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancell	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzies, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife)
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to Cancelled to 15.5 Cancelle	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzles, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746 (current easement)
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to 10.1016 CT 5248/901 Section 338 in 17.02.1995 23.02.1995 17.09.1997	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzles, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746 (current easement)
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to Cancelled to 15.5 Cancelle	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzles, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746 (current easement)
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to 17.02.1995 23.02.1995 17.02.1995 Cancelled to	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzies, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Willie Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746(current easement) CT 5486/765
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to Cancelled to 17.02.1995 23.02.1995 17.09.1995 Cancelled to	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzies, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Willie Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746(current easement) CT 5486/765
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to 17.02.1995 23.02.1995 23.02.1995 Cancelled to	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzies, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Willie Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746(current easement) CT 5486/765 the Hundred of Menzies, County of Carnarvon Land Grant to John Turner (farmer)
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancell	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzies, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Willie Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746(current easement) CT 5486/765 the Hundred of Menzies, County of Carnarvon Land Grant to John Turner (former) Lease to George Turner and William Richard Boxer
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to 10.1000 CT 5248/901 Section 338 in 17.02.1995 23.02.1995 17.09.1995 Cancelled to Cancelled to Cancelled to 10.10000 CT 755/69 Section 338 in 08.11.1906 31.03.1920 17.04.1923	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) The Hundred of Menzies, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746(current easement) CT 5486/765 The Hundred of Menzies, County of Carnarvon Land Grant to John Turner (former) Lease to George Turner and William Richard Boxer Transfer to George Alfred Turner (farmer)
Section 338 in 30.12.1997 13.10.1998 Cancelled to Cancelled to Cancelled to 17.02.1995 23.02.1995 23.02.1995 Cancelled to	New title to Wille Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5584/237 (current easement) CT 5584/238 the Hundred of Menzies, County of Carnarvon New title to Malcolm John Turner (farmer) and Josephine Dorothy Turner (his wife) Transfer to Willie Dirk Smith Grant of easement to ETSA Corporation (now SA Power Networks) CT 5486/746(current easement) CT 5486/765 the Hundred of Menzies, County of Carnarvon Land Grant to John Turner (former) Lease to George Turner and William Richard Boxer

Appendix C

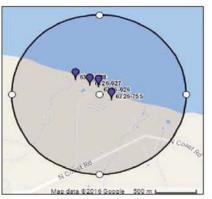
WaterConnect Groundwater Database Search

Job: KIPT Smith Bay Baseline Assessment

LBW Job Number: 150738-01 Search Date: 01-Sep-16 Search Radius: 1km

 Headings
 Class

 EC: Bectriscal conductivity
 WW: Water wells


 TDS: Total dissolved solids
 WP: Waterpoint well

 SWI: Standing water level
 BNG: Engineering well

RSWL: Relative standing water level

Purpose DOM: Domestic Status ABD: Abandoned DRN: Drainage BKF: Backfilled **ENV: Environmental** CRL: Controlled flowing INV: Investigation NL: Not located IRR: Imigation OPR: Operational OBS: Observation UFL: Uncontrolled flowing SPR: Spring UKN: Unknown STK: Stock RHB: Rehabilitated MON: Monitoring FL: Flowing

Unit No.	Class	Purpose	Status	Status Date	Permit Number	DHNO	Original drill date	Original drill depth (m)	Max drill date	Max drill depth (m)	RSWL (mAHD)	SWL (mBGL)	SWL date	TDS (mg/L)	EC (m\$/cm)	Salinity date	рН	pH_date	yield (L/min)	yield date	mga easting	mga northing	mga zoni
6326-755	ww	STK		F0000000000000000000000000000000000000	153385	34882	5/01/1996	54	54	5/01/1996		5	5/01/1996	11192	19000	5/01/1996	7.2	5/01/1996	1.4	5/01/1996	720189.1	6058370.54	53
6326-926	ww	INV	BKF	23/11/2015	288193	254029	23/11/2015	20	20	23/11/2015											720049.82	6058532.27	53
6326-927	ww	INV	BKF	24/11/2015	288194	254030	24/11/2015	20	20	24/11/2015											719950.11	6058555.49	53
6326-928	ww	INV	BKF	25/11/2015	288195	254031	25/11/2015	20	20	25/11/2015											719782.12	6058626.35	53

Appendix D

Site Inspection Photographs

Photograph 1: View looking north from the south of site down the approximate western half of site

Photograph 2: Looking west along a cut and levelled platform, circular potential abalone tank footprints with potential drainage

Photograph 3: View looking west along cut and levelled platform with house and shed in the background

Photograph 3: View looking south of the driveway along the western boundary

Photograph 5: View looking south west drilling bore hole BH6

Photograph 6: View looking north north-west along the western boundary. Smith Creek is offsite in the background

LBW environmental projects

Job No: 150738-01 Drawn: T Martin Checked: B Fitzgerald Smith Bay, Kangaroo Island Preliminary Site Investigation

For

KIPT

Site Photographs

Photograph 7: View looking east showing the steep slope towards the foreshore towards the north of site

Photograph 8: View looking west at the steep slope towards the foreshore

Photograph 9: View looking east at potential former drainage/ pumping pipes and a dam

Photograph 10: View looking west at potential former drainage/ pumping pipes and a dam

Photograph 11: View looking north from the house at the active septic system

Photograph 12: Disused septic south of the shed

Smith Bay, Kangaroo Island **Preliminary Site Investigation**

For

KIPT

Job No: 160878 Drawn: T Martin Checked: B Fitzgerald

Site Photographs

Photograph 13: Showing a grab sample from the disused septic with LNAPL sitting above liquid waste

Photograph 14: View looking east at cut and levelled platforms. Drains with pipes discharging into them can be seen

Photograph 15: View looking west at a hardstand drainage channel with pipes discharging into the drain

Photograph 16: Pipe and drain infrastructure

Photograph 17: View looking west at potential re-vegetation of a former onshore abalone tank footprint. The house and shed are in the background

Photograph 18: Soil bore hole drilling

Smith Bay, Kangaroo Island Preliminary Site Investigation

For

KIPT

Photograph 19: Soil core of BH2

Photograph 20: Soil core of BH7

Photograph 21: Soil core of BH9

Photograph 22: Soil core of BH12

Photograph 23: Soil core of BH17

Photograph 24: Soil core of BH13

Job No: 160878 Drawn: T Martin Checked: B Fitzgerald Smith Bay, Kangaroo Island Preliminary Site Investigation

For

KIPT

Appendix E

Historical Aerial Photographs

Smith Bay Approvals

Baseline Site Assessment

For

Kangaroo Island Plantation Timbers

LEGEND

Apr

Approximate site boundary

DATE 18.04.1983

SURVEY 2979

PHOTO 193

SCALE

0 10 2

Image source:

Mapland, Dept for Environment and Natural Resources

Smith Bay Approvals

Baseline Site Assessment

For

Kangaroo Island Plantation Timbers

LEGEND

Approximate site boundary

23.01.1989

SURVEY 4006

PHOTO

122

SCALE

Image source:

Mapland, Dept for Environment and Natural Resources

Smith Bay Approvals

Baseline Site Assessment

For

Kangaroo Island Plantation Timbers

LEGEND

Approximate site boundary

...

DATE 07.12.1993

SURVEY 4740

PHOTO 20

SCALE

0 10 2

Image source:

Mapland, Dept for Environment and Natural Resources

Smith Bay Approvals

Baseline Site Assessment

For

Kangaroo Island Plantation Timbers

LEGEND

Approximate site boundary

20.09.1999

SURVEY 5711

PHOTO

53

SCALE

Image source:

Mapland, Dept for Environment and Natural Resources

Smith Bay Approvals

Baseline Site Assessment

For

Kangaroo Island Plantation Timbers

LEGEND

Approximate site boundary

DATE 15.03.2002

SURVEY 6050

PHOTO 25

SCALE

0 10 2

Image source:

Mapland, Dept for Environment and Natural Resources

Smith Bay Approvals

Baseline Site Assessment

For

Kangaroo Island Plantation Timbers

LEGEND

_

Approximate site boundary

DATE

14.10.2015

SURVEY

PHOTO

SCALE

0 10 2

Image source: Google Earth

Appendix F

EPA Public Register Searches

Receipt No :

Admin No : 61147 (40813)

LBW Environmental Projects PO BOX 225 STEPNEY SA 5069 Contact: Section 7 Telephone: (08) 8204 2026 Email: epasection7@sa.gov.au

Contact: Public Register Telephone: (08) 8204 9128

Email: epa.publicregister@sa.gov.au

08 September, 2016

EPA STATEMENT TO FORM 1 - CONTRACTS FOR SALE OF LAND OR BUSINESS

The EPA provides this statement to assist the vendor meet its obligations under section 7(1)(b) of the Land and Business (Sale and Conveyancing) Act 1994. A response to the questions prescribed in Schedule 1-Contracts for sale of land or business-forms (Divisions 1 and 2) of the Land and Business (Sale and Conveyancing) Act 1994 is provided in relation to the land.

I refer to your enquiry concerning the parcel of land comprised in

Title Reference CT Volume 6127 Folio 273

Address Pieces 51-52, 1970B North Coast Road, WISANGER SA 5223

Schedule - Division 1 - Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS OF MORTGAGES, CHARGES AND PRESCRIBED ENCUMBRANCES AFFECTING THE LAND

7. Environment Protection Act 1993

Does the EPA hold any of the following details relating to the Environment Protection Act 1993:

7.1	Section 59 - Environment performance agreement that is registered in relation to the land.	NO
7.2	Section 93 - Environment protection order that is registered in relation to the land.	NO
7.3	Section 93A - Environment protection order relating to cessation of activity that is registered in relation to the land.	NO
7.4	Section 99 - Clean-up order that is registered in relation to the land.	NO
7.5	Section 100 - Clean-up authorisation that is registered in relation to the land.	NO
7.6	Section 103H - Site contamination assessment order that is registered in relation to the land.	NO
7.7	Section 103J - Site remediation order that is registered in relation to the land.	NO

CT Volume 6127 Folio 273 page 1 of 4

7.8	Section 103N - Notice of declaration of special management area in relation to the land (due to possible existence of site contamination).	NO
7.9	Section 103P - Notation of site contamination audit report in relation to the land.	NO
7.10	Section 103S - Notice of prohibition or restriction on taking water affected by site contamination in relation to the land.	NO

Schedule – Division 2 – Land and Business (Sale and Conveyancing) Regulations 2010

PARTICULARS RELATING TO ENVIRONMENT PROTECTION

3-Licences and exemptions recorded by EPA in public register

Does	the EPA hold any of the following details in the public register:	
a)	details of a current licence issued under Part 6 of the <i>Environment Protection Act 1993</i> to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	NO
b)	details of a licence no longer in force issued under Part 6 of the <i>Environment Protection Act</i> 1993 to conduct, at the land-	
i)	a waste or recycling depot (as referred to in clause 3(3) of Schedule 1 Part A of that Act); or	NO
ii)	activities producing listed wastes (as referred to in clause 3(4) of Schedule 1 Part A of that Act); or	NO
iii)	any other prescribed activity of environmental significance under Schedule 1 of that Act?	YES
c)	details of a current exemption issued under Part 6 of the <i>Environment Protection Act</i> 1993 from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
d)	details of an exemption no longer in force issued under Part 6 of the <i>Environment Protection</i> Act 1993 from the application of a specified provision of that Act in relation to an activity carried on at the land?	NO
e)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to operate a waste depot at the land?	NO
f)	details of a licence issued under the repealed Waste Management Act 1987 to operate a waste depot at the land?	NO
g)	details of a licence issued under the repealed South Australian Waste Management Commission Act 1979 to produce waste of a prescribed kind (within the meaning of that Act) at the land?	NO

CT Volume 6127 Folio 273 page 2 of 4

h)	details of a licence issued under the repealed Waste Management Act 1987 to produce prescribed waste (within the meaning of that Act) at the land?	NO
4-Poll	ution and site contamination on the land - details recorded by the EPA in public register	
Does tand:	the EPA hold any of the following details in the public register in relation to the land or part of the	
a)	details of serious or material environmental harm caused or threatened in the course of an activity (whether or not notified under section 83 of the <i>Environment Protection Act 1993</i>)?	NO
b)	details of site contamination notified to the EPA under section 83A of the <i>Environment Protection Act</i> 1993?	NO
c)	a copy of a report of an environmental assessment (whether prepared by the EPA or some other person or body and whether or not required under legislation) that forms part of the information required to be recorded in the public register?	NO
d)	a copy of a site contamination audit report?	NO
e)	details of an agreement for the exclusion or limitation of liability for site contamination to which section 103E of the <i>Environment Protection Act 1993</i> applies?	NO
f)	details of an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103l of the <i>Environment Protection Act</i> 1993?	NO
g)	details of an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993?</i>	NO
h)	details of a notification under section 103Z(1) of the <i>Environment Protection Act 1993</i> relating to the commencement of a site contamination audit?	NO
i)	details of a notification under section 103Z(2) of the <i>Environment Protection Act 1993</i> relating to the termination before completion of a site contamination audit?	NO
j)	details of records, held by the former South Australian Waste Management Commission under the repealed Waste Management Act 1987, of waste (within the meaning of that Act) having been deposited on the land between 1 January 1983 and 30 April 1995?	NO
5-Poll	lution and site contamination on the land - other details held by EPA	
Does	the EPA hold any of the following details in relation to the land or part of the land:	
a)	a copy of a report known as a "Health Commission Report" prepared by or on behalf of the South Australian Health Commission (under the repealed South Australian Health Commission Act 1976)?	NO
b)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site contamination assessment proposal under section 103I of the <i>Environment Protection Act 1993?</i>	NO
c)	details (which may include a report of an environmental assessment) relevant to an agreement entered into with the EPA relating to an approved voluntary site remediation proposal under section 103K of the <i>Environment Protection Act 1993</i> ?	NO

CT Volume 6127 Folio 273 page 3 of 4

d) a copy of a pre-1 July 2009 site audit report?

NO

e) details relating to the termination before completion of a pre-1 July 2009 site audit?

NO

A summary of the activities relating to wastes may be appended. Should you require any further information regarding this land (outside the Public Register details) please contact the Environment Protection Authority to make necessary arrangements.

Details and/or copies of environmental assessments, licences and records on the Public Register may be obtained from the Environment Protection Authority on payment of the prescribed fee.

Prior to arranging an examination and/or copies of the required above information please telephone (08) 8204 9128 to contact the Public Register Administrator to ensure the required details are available upon arrival.

All care and diligence has been taken to access the above information from available records. Historical records provided to the EPA concerning matters arising prior to 1 May 1995 are limited and may not be accurate or complete and therefore the EPA cannot confirm the accuracy of the historical information provided.

File Reference: EPA/12701

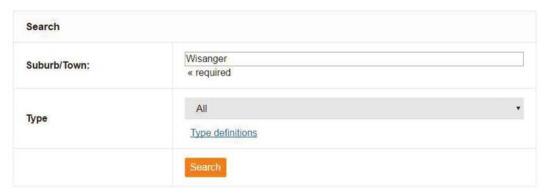
CT Volume 6127 Folio 273 page 4 of 4

EPA Site Contamination Index Search

150738-01

31/08/16

Within 1 km of subject site =


Search contamination site index

This index was last updated 22 August 2016

No contamination sites were found which match the specified search terms.

This index was last updated 22 August 2016

No contamination sites were found which match the specified search terms.

Appendix G

SafeWork SA Dangerous Substances Search

Attorney-General's Department

Licensing, Customer Services Team

Level 4 World Park A 33 Richmond Road Keswick SA 5035

GPO Box 465 Adelaide SA 5001

DX 715 Adelaide

Tahlia Martin LBW Environmental Projects Pty Ltd 184 Magill Road NORWOOD SA 5067

Phone 1300 365 255 08 8303 9903 Fax

Email licensing.safework@sa.gov.au

50-560-588-327

www.safework.sa.gov.au

Dear Ms Martin

6 September 2016

DANGEROUS SUBSTANCES LICENCE SEARCH

PROPERTY DETAILS: 1970B North Coast Road, Wisanger

Further to your Application for a Dangerous Substance Search dated 31/8/2016 for the abovementioned site, I advise that there are no current or historical records for this site.

Yours sincerely

LICENSING, CUSTOMER SERVICES TEAM SAFEWORK SA

Appendix H

Soil Chemical Summary Tables

									Me	tals								
	Arsenic	Beryllium	Boron	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Cobalt	Соррег	Iron	lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Tio	Zinc
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	4	1	3	0.4	1	1	1	1	1	1	1	0.1	1	1	2	1	1	1
NEPM 1999 Soil HIL D - Commercial/Industrial	3000	500	300000	900	3600		4000	240000		1500	60000	730		6000	10000			400000
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)	160							330		1800				730				1400
NEPM 1999 EIL - Commercial/Industrial (CLAY)	160							340		1800				810				1400
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																		
NEPM 1999 Management Limits - Commercial/Industrial (fine)																		
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																		

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																		
rid Based Soil Bo	res		v.		-0.				. ,									70.			
BH1-01	BH1	0-0.2	13/10/2016	<4	120	- 2	<0.4		8	20	2	122	4	- 2	<0.1	<1	2	<2	<1	<1	3
BH2-01	BH2	0-0.05	13/10/2016	<4	100	*	<0.4	•	19	- 65	5		6	8.	<0.1	<1	5	<2	<1	<1	8
BH3-02	BH3	0.5-0.6	13/10/2016	<4	-	- 4	<0.4	- 20	5	47	3	188	1		<0.1	<1	5	<2	<1	<1	4
BH4-01	BH4	0-0.1	13/10/2016	5	-	- 5	<0.4	- 3	41	- 5	<1		14	1.5	<0.1	<1	3	<2	<1	<1	3
BH4-03	BH4	0.5-0.6	13/10/2016	<4	<1	8	<0.4	<1	17	2	3		6	110	<0.1	1:00	4	<2	*		6
BH5-01	BH5	0-0.1	13/10/2016	<4	120	2	<0.4		30	- 20	2	100	8	120	<0.1	<1	7	<2	<1	<1	8
BH6-01	8H6	0-0.1	13/10/2016	<4	<1	9	<0.4	<1	14	4	2	0.56	4	86	<0.1	0.50	4	<2	70	1.5	5
BH7-01	BH7	0-0.1	13/10/2016	<4		- +	<0.4		21		2		7		<0.1	<1	5	<2	<1	<1	5
BH8-01	BH8	0-0.15	13/10/2016	<4	<1	5	<0.4	<1	9	1	3	1627	4	41	<0.1	(San)	2	<2	2	°2	8
BH9-01	ВН9	0-0.1	12/10/2016	<4	175	-	<0.4	-	8	50	2	375	3	1.00	<0.1	<1	2	<2	<1	<1	4
BH9-03	BH9	0.35-0.45	12/10/2016	6	140		<0.4		9		<1		4	(848	<0.1	<1	3	<2	<1	<1	3
BH10-01	BH10	0-0.15	12/10/2016	<4	- 0		<0.4		16	- 20	2		5		<0.1	<1	5	<2	<1	<1	5
BH11-01	BH11	0-0.1	13/10/2016	<4	100	- 8	<0.4		15	- 55	3	100	5		<0.1	<1	4	<2	<1	<1	6
BH11-03*	BH11	0.6-0.75	13/10/2016	<4	120	2	<0.4	-	4	49	<1	2300	1	(14)	<0.1	<1	4	<2	<1	<1	2
BH12-01	BH12	0-0.1	13/10/2016	<4		8	<0.4	-5.	11	50	2	-	4		<0.1	<1	2	<2	<1	<1	5
BH13-01	BH13	0-0.35	13/10/2016	<4	(e+c		<0.4	*:	6	*0	<1	5.00	1	0.00	<0.1	<1	2	<2	<1	<1	4
BH13-04	BH13	0-0.35	13/10/2016		120	2	12	23	82	27	2	100	¥	100	2	25	- 25	1.14	2	1.52	

									Me	tals								
	Arsenic	Beryllium	Boron	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Cobalt	Copper	Iron	lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Tin	Zinc
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	4	1	3	0.4	1	1	1	1	1	1	1	0.1	1	1	2	1	1	1
NEPM 1999 Soil HIL D - Commercial/Industrial	3000	500	300000	900	3600		4000	240000		1500	60000	730		6000	10000			400000
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)	160							330		1800				730				1400
NEPM 1999 EIL - Commercial/Industrial (CLAY)	160							340		1800				810				1400
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																		
NEPM 1999 Management Limits - Commercial/Industrial (fine)																		
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																		

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																		
Grid Based Soil Bo	res																				
BH13-05	BH13	1.65-1.8	13/10/2016		3.0	*	12.	81	126	*:	- 31	100	*	res		0.00	- 8		-	1.38	- 8
BH14-01	BH14	0-0.15	12/10/2016	<4	191	- 2	<0.4	-	13	- 20	6	100	5	248	<0.1	<1	4	<2	<1	<1	12
BH15-01	BH15	0-0.15	12/10/2016	4	1.50	- 0	<0.4	51	14	- 50	5	0.56	6		<0.1	<1	5	<2	<1	<1	8
BH16-01	BH16	0-0.2	12/10/2016	<4			<0.4	•	9	+8	2		3		<0.1	<1	4	<2	<1	<1	4
BH17-01	BH17	0-0.15	13/10/2016	<4	<1	8	<0.4	<1	16	2	3	1.027	6	77	<0.1	120	5	<2	-	100	6
BH18-01	BH18	0-0.1	13/10/2016	<4		-	<0.4	-	12	- 5	2	2.5	4		<0.1	<1	3	<2	<1	<1	6
BH19-01	BH19	0-0.15	13/10/2016	<4			<0.4		18		3	-	7		<0.1	<1	4	<2	<1	<1	7
BH20-01	BH20	0-0.1	12/10/2016	<4	150	2	<0.4	20	10	27	2	100	5	-	<0.1	<1	2	<2	<1	<1	6
BH20-04*	BH20	1.1-1.3	12/10/2016	<4	9.00		<0.4	•	27	- 61	1	20,000	8		<0.1	<1	4	<2	<1	<1	8
Targeted Soil Bore	is											40 10									
T1-01	T1	0-0.1	13/10/2016	<4	-	-	<0.4	3.	16	- 8	14		5	1.5	<0.1	<1	9	<2	<1	1	200
T2-01	T2	0-0.1	13/10/2016	<4	<1	31	<0.4	<1	12	4	2	19-1	5	32	<0.1	190	3	<2	-	1.00	6
T3-04	Т3	0.7-0.8	13/10/2016	<4	123	2	<0.4	20	10	27	2	-	2		<0.1	<1	6	<2	<1	<1	3
T4-01	T4	0-0.05	13/10/2016	<4	1.5	- 8	<0.4	•	23	- 51	3	(17)	7	13.5	<0.1	<1	7	<2	<1	<1	18
T5-01	T5	0-0.05	13/10/2016	<4		- K	<0.4		17	- 80	1	-	6	-	<0.1	<1	4	<2	<1	<1	5
T6-01	Т6	0-0.05	13/10/2016	<4	127		<0.4	20	16	20	3	100	5		<0.1	<1	5	<2	<1	<1	6

*sample selected as ambient background concentration (ABC) for calculation of the EIL. Selected EILS are derived based on the added contaminant limit (ACL) + background concentrations. EIL/ESLs are applicable to samples collected within top 2m of soil profile.

									P/	ΔH									PAH other		henols her
	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH	Benzo(a)pyrene TEQ	Carcinogenic PAH (BaP TEQ Half LOR)	Carcinogenic PAH (BaP TEQ LOR)	Benzo(b)&(k)fluoranthene	Cresol Total	Picloram
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.5	0.5	0.5	0.2	0.2	0.5
NEPM 1999 Soil HIL D - Commercial/Industrial															4000		40	40		25000	35000
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)												370								1	
NEPM 1999 EIL - Commercial/Industrial (CLAY)												370									
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																					
NEPM 1999 Management Limits - Commercial/Industrial (fine)																					
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)					1.4																

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																					
Grid Based Soil Bo	res			1					·					70.										
BH1-01	BH1	0-0.2	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	125	<0.5
BH2-01	BH2	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	9*3	
BH3-02	BH3	0.5-0.6	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	1427	- 2
BH4-01	BH4	0-0.1	13/10/2016	-	- 3	-	- 3	-	-		-	-	-	-		18		-	-	-3		-	- 3	<0.5
BH4-03	BH4	0.5-0.6	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	<0.2	<0.5
BH5-01	BH5	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	-	-
BH6-01	BH6	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	<0.2	<0.5
BH7-01	BH7	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2		-
BH8-01	BH8	0-0.15	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	<0.2	<0.5
BH9-01	BH9	0-0.1	12/10/2016	- 5	127	-	-	9.70	-			250	-	1.5	-	-	50	-	5.53		0.70	-	-	<0.5
BH9-03	ВН9	0.35-0.45	12/10/2016	-	19		94	(84)		2.0	-	348				1.02	- 20	- 0	1941	-	0.00	-	740	-
BH10-01	BH10	0-0.15	12/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2		-
BH11-01	BH11	0-0.1	13/10/2016	-	18	-	-	2.50	- 15		-	1.00	-			1.5	- 55					*	1.5	-
BH11-03*	BH11	0.6-0.75	13/10/2016	-20	14		12	848	-	129	-	520		14		184	- an	2	921	12	122	-	340	-
BH12-01	BH12	0-0.1	13/10/2016	-5.	- 5	-	- 8	100	3			7.	- 5		- 8	T-S	50	š		- 3				<0.5
BH13-01	BH13	0-0.35	13/10/2016	-			18			1980		(*):				134	*	- 1	7.0		0.00		2.00	-
BH13-04	BH13	0-0.35	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	33	-

									PA	АН									PAH other	5.00	henols ner
	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH	Benzo(a)pyrene TEQ	Carcinogenic PAH (BaP TEQ Half LOR)	Carcinogenic PAH (BaP TEQ LOR)	Benzo(b)&(k)fluoranthene	Cresol Total	Picloram
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.5	0.5	0.5	0.2	0.2	0.5
NEPM 1999 Soil HIL D - Commercial/Industrial															4000		40	40		25000	35000
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)												370									
NEPM 1999 EIL - Commercial/Industrial (CLAY)												370									
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																					
NEPM 1999 Management Limits - Commercial/Industrial (fine)																					
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)					1.4																

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																					
Grid Based Soil Bo	res																							
BH13-05	BH13	1.65-1.8	13/10/2016				- 3-	59-5	-	(ines	*	3+3:	-	19		1.2	- 80	~	2.40		10-11		1000	-:
BH14-01	BH14	0-0.15	12/10/2016	-	32			120	-	794	-	5-9	-	1 2		1.52	- 20	.0	192	- 2	243	-		- 2
BH15-01	BH15	0-0.15	12/10/2016	-51	27		:0	0.7%	- 2	3.00	- 7:	100	-2:	(2)	- 55	1.5	50	100	9.56	- 0.0	0.00		350	
BH16-01	BH16	0-0.2	12/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	(*)	
BH17-01	BH17	0-0.15	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	<0.2	<0.5
BH18-01	BH18	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	30	-
BH19-01	BH19	0-0.15	13/10/2016		14			(**)	œ	140	-		-			1/4			1.00	· *			190	<0.5
BH20-01	BH20	0-0.1	12/10/2016	- 20	32	120	12	122	2	120	2	228	2	12	2	1.2	27	12	1.2	- 2	120	- 2	120	<0.5
BH20-04*	BH20	1.1-1.3	12/10/2016	- 20	1.5			3.5					-				- 80	13						-
Targeted Soll Bore	15																							
T1-01	T1	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2		8
T2-01	T2	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	<0.2	<0.5
T3-04	Т3	0.7-0.8	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	- asi	2
T4-01	T4	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	053	s
T5-01	T5	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2		-
T6-01	T6	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.2	140	

						TF	RH								вт	EX		
	ТВН С6-С9	TRH >C10-C14	TRH >C15-C28	TRH >C29 - C36	TRH >C10 - C36 (sum of fractions)	TRH C6-C10	TRH CG-C10 less BTEX (F1)	TRH >C10-C16	TRH >C10-C16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	TRH >C10-C40 (sum of fractions)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	25	50	100	100	50	25	25	50	50	100	100	50	0.2	0.5	1	1	2	1
NEPM 1999 Soil HIL D - Commercial/Industrial	-	-																
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)																		
NEPM 1999 EIL - Commercial/Industrial (CLAY)																		
NEDNA ARROS C. II LIEU D. C							310						4					
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																		
NEPM 1999 Soil HSL D for Vapour intrusion - Comm./indust. (Clay, 0-1mbSL) NEPM 1999 Management Limits - Commercial/Industrial (fine)						800		1000		5000	10,000							

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																		
irid Based Soil Bo	res		v.																		
BH1-01	BH1	0-0.2	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH2-01	BH2	0-0.05	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH3-02	BH3	0.5-0.6	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH4-01	BH4	0-0.1	13/10/2016	-	-	-	-	-	- 3	- 5	- 3		- 3	-	-	-			-		-
BH4-03	BH4	0.5-0.6	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH5-01	BH5	0-0.1	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH6-01	8H6	0-0.1	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH7-01	BH7	0-0.1	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH8-01	BH8	0-0.15	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH9-01	вн9	0-0.1	12/10/2016	-	175	-		-	- 27	50	-	17.	-		-	270	-		-	- 2	- 5
BH9-03	вн9	0.35-0.45	12/10/2016		340		24	- 27	9	-	- 14	7.00		100		2.0	-	190		1.74	- 85
BH10-01	BH10	0-0.15	12/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH11-01	BH11	0-0.1	13/10/2016		280		7.5	-	35		-	1.00	-		-	94.5	-		-	-	-
BH11-03*	BH11	0.6-0.75	13/10/2016	-2	126	2	19		92	47	- 2		-	(4)	-	849	- 2	141	-20	1 (5	2:
BH12-01	BH12	0-0.1	13/10/2016	1		= 1		-5.	ē	-51	ž.	-	9			9.00	-	-	-	-	-50
BH13-01	BH13	0-0.35	13/10/2016	-		-	1.29	*:	- 10	- 41	-	5.00	-	0.00		1.00	-			19	- 6
BH13-04	BH13	0-0.35	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1

	_												-					
						TF	RH								ВТ	EX		
	TRH C6-C9	TRH >C10-C14	TRH >C15-C28	TRH >C29 - C36	TRH >C10 - C36 (sum of fractions)	TRH C6-C10	TRH C6-C10 less BTEX (F1)	TRH >C10-C16	TRH >C10-C16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	TRH >C10-C40 (sum of fractions)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	25	50	100	100	50	25	25	50	50	100	100	50	0.2	0.5	1	1	2	1
NEPM 1999 Soil HIL D - Commercial/Industrial																		
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)																		
NEPM 1999 EIL - Commercial/Industrial (CLAY)																		
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)							310						4					
NEPM 1999 Management Limits - Commercial/Industrial (fine)						800		1000		5000	10,000							
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)							215	170		2500	6600		95	135	185			95

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																		
Grid Based Soil Bo	ores			I																	
BH13-05	BH13	1.65-1.8	13/10/2016	-		-	120	*:	- 1	- 40		1000	*	128	-	0.00			-	138	- 6
BH14-01	BH14	0-0.15	12/10/2016	- 2	190	2	12.0	-	12	-20	2	1.00	- 2	248	-	100	2		25	1.0	21
BH15-01	BH15	0-0.15	12/10/2016		1.50	- 2	(2	51	100	50		0.56	171			150	- 6:	-21	7.0	1.5	- 50
BH16-01	BH16	0-0.2	12/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH17-01	BH17	0-0.15	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH18-01	BH18	0-0.1	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
BH19-01	BH19	0-0.15	13/10/2016	*	-		14		194			-	-	343		3-3			*	19	+
BH20-01	BH20	0-0.1	12/10/2016	2	120	2	12	20	2	22	12	1325	2	100	2	125	_ S	5	20	1/2	2
BH20-04*	BH20	1.1-1.3	12/10/2016		100	-	-			- 6	15	3.5					-		-		-
Targeted Soil Bore	es																				
T1-01	T1	0-0.1	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
T2-01	T2	0-0.1	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
T3-04	T3	0.7-0.8	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
T4-01	T4	0-0.05	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
T5-01	T5	0-0.05	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1
T6-01	T6	0-0.05	13/10/2016	<25	<50	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<2	<1

										Organoc	hlorine P	esticides									
	4,4-DDD	4,4-DDE	4,4-DDT	DDT+DDE+DDD	а-вис	b- ВНС	оне-р	g-BHC (Lindane)	Aldrin	Dieldrin	Chlordane (cls)	Chlordane (trans)	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
ra.	mg/kg		mg/kg		mg/kg		-	mg/kg	mg/kg		mg/kg		mg/kg	mg/kg		mg/kg	mg/kg	mg/kg			_
EQL	0.1	0.1	0.1	0.1 3600	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2
NEPM 1999 Soil HIL D - Commercial/Industrial				3600												100		50		2500	160
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)			640																		
NEPM 1999 EIL - Commercial/Industrial (CLAY)			640																		
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																					
NEPM 1999 Management Limits - Commercial/Industrial (fine)																					
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																					

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																					
rid Based Soil Bo	res													70.			10 10		/VI /					
BH1-01	BH1	0-0.2	13/10/2016	-	12	1.2	- 2	72.5	- 2	-	2	120	- 2		-2	1 2	. 27	- 2	-	- 2	- 2	2	125	2
BH2-01	BH2	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
BH3-02	BH3	0.5-0.6	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- ×
BH4-01	BH4	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- 8
BH4-03	BH4	0.5-0.6	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<2
BH5-01	BH5	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2
BH6-01	BH6	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<2
BH7-01	BH7	0-0.1	13/10/2016		*		- 25	- (e-c	-		-:	-				- 39	- 83	74	:*:			-	(*)	
BH8-01	BH8	0-0.15	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<2
BH9-01	ВН9	0-0.1	12/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
BH9-03	ВН9	0.35-0.45	12/10/2016	-	19		(#	(e.		2.0	-	3-80				1.02	- 21	- 4	8.43	-		-	740	-
BH10-01	BH10	0-0.15	12/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- 2
BH11-01	BH11	0-0.1	13/10/2016		100		-	-	- 15				-	-	-60	1.00	- 65	- 12	-			*	1.5	- 8
BH11-03*	BH11	0.6-0.75	13/10/2016	20	14		2	0.46	-	129	- 2	140		14	- 20	1.84	- Q7	12	721	12	120	1.0		ų
BH12-01	BH12	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
BH13-01	BH13	0-0.35	13/10/2016					3.43		10.00	*	(*);					* *:		2.43		1.0		200	*
BH13-04	BH13	0-0.35	13/10/2016	2	S4	-	2	132	2	100	¥ .	. 4	-	-	- 2	1 12	20	- 2	- 2	- 2	122	2	- 25	2

										Organoc	hlorine P	esticides									
	4,4-DDD	4,4-DDE	4,4-DDT	00T+00E+000	а-вис	р-вис	д-вис	g-BHC (Lindane)	Aldrin	Dieldrin	Chlordane (cis)	Chlordane (trans)	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	DESCRIPTION OF THE PERSON NAMED IN	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2
NEPM 1999 Soil HIL D - Commercial/Industrial				3600												100		50		2500	160
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)			640																		
NEPM 1999 EIL - Commercial/Industrial (CLAY)			640																		
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																					
NEPM 1999 Management Limits - Commercial/Industrial (fine)																					
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																					

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																					
Grid Based Soil Bo	res																							
BH13-05	BH13	1.65-1.8	13/10/2016	*			- 3-	1990	-	(ren	*	0+):	- 15	194		100	*5		10.00	*	1000		1.00	-
BH14-01	BH14	0-0.15	12/10/2016	-	32	-		100	-	- XX	-	S-17	-	-		1.02	20	.02	141	- 2		-		-
BH15-01	BH15	0-0.15	12/10/2016	50	- 27		:0	0.7%	- 2	2.00	- 5	9570	- 01	(5)	75	05	50	100	9.56		0.50		(5)	
BH16-01	BH16	0-0.2	12/10/2016		- 34										•	-	-8	·	100	*	0.86		(*)	
BH17-01	BH17	0-0.15	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<2
BH18-01	BH18	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
BH19-01	BH19	0-0.15	13/10/2016		14		- 1	(e	-		-	-	-			1/4	- 20	- 0	1.00	- 98	1941	-	190	
BH20-01	BH20	0-0.1	12/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2
BH20-04*	BH20	1.1-1.3	12/10/2016				-					100	-				- 80						(2)	
Targeted Soll Bore	5																							
T1-01	T1	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- 8
T2-01	T2	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<2
T3-04	T3	0.7-0.8	13/10/2016	2	54		- 0	120	2	-	2	4		2	- 21	1 12	27	- 2		- 2	120	2	-25	2
T4-01	T4	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	s
T5-01	T5	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
T6-01	T6	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-

				Or	ganopho	sphorou	Pesticid	es				Pesti	cides	Synthetic Pyrethroic
	Azinophos methyl	Bromophos-ethyl	Chlorpyrifos	Chlorpyrifos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Ronnel	Mirex	Parathion	Bifenthrin
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
QL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.1	0.5
EPM 1999 Soil HIL D - Commercial/Industrial			2000									100		4500
EPM 1999 EIL - Commercial/Industrial (Silty CLAY)														
EPM 1999 EIL - Commercial/Industrial (CLAY)														
EPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)														
EPM 1999 Management Limits - Commercial/Industrial (fine)														
EPM 1999 Soil ESLs - Commercial/Industrial (fine)														

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date														
rid Based Soil Bo	res]									0				
BH1-01	BH1	0-0.2	13/10/2016	-	20	- 54	12	- 2	122	2	- 2	- 2	20	2		- 1	2
BH2-01	BH2	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	:-	<0.1	*3
BH3-02	BH3	0.5-0.6	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	124	<0.1	- 40
BH4-01	BH4	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2	<0.1	
BH4-03	BH4	0.5-0.6	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5
BH5-01	BH5	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1 24	<0.1	20
BH6-01	BH6	0-0.1	13/10/2016	1.5	50	<0.1	9.56	- 1	0.75	-	220	71	17.0	- 51	<0.5	51	<0.5
BH7-01	BH7	0-0.1	13/10/2016			195	(*)	14.			(★)	*	*:	*			9 8
BH8-01	BH8	0-0.15	13/10/2016	1 5	2	<0.1	128	10	623	- 2	(2)	2	(SV6)	_ <u>2</u>	<0.5		<0.5
BH9-01	ВН9	0-0.1	12/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	- 5
BH9-03	BH9	0.35-0.45	12/10/2016		- 8		2.45	- 12		-	2.0	-	1.045	-	79	-	¥2
BH10-01	BH10	0-0.15	12/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	\.	<0.1	- 3
BH11-01	BH11	0-0.1	13/10/2016	1.5	-5	8	100	18	3.5	-		8	(30)		1.5	-	- 6
BH11-03*	BH11	0.6-0.75	13/10/2016	-	-21	9	721	- 12	140	-	848		145	- 20	12		29
BH12-01	BH12	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	8	<0.1	8
BH13-01	BH13	0-0.35	13/10/2016	139			(e)		3.5		(0.0)		(exc	*	194	• 1	•
BH13-04	BH13	0-0.35	13/10/2016	12	20	12	121	- 12	-	2	123	2	129	2	12	- 2	23

		Organophosphorous Pesticides										Pesti	cides	Synthetic Pyrethroids
	Azinophos methyl	Bromophos-ethyl	Chlorpyrifos	Chlorpyrifos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Ronnel	Mirex	Parathion	Bifenthrin
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.1	0.5
NEPM 1999 Soil HIL D - Commercial/Industrial			2000									100		4500
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)														
NEPM 1999 EIL - Commercial/Industrial (CLAY)														
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)														
NEPM 1999 Management Limits - Commercial/Industrial (fine)														
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)														

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date														
irid Based Soil Bo	res																
BH13-05	BH13	1.65-1.8	13/10/2016	100	-8	- 12	200	1-	(80)		2.00		199		12	*:	**
BH14-01	BH14	0-0.15	12/10/2016	- 2	20	- 0	941	12		-	348	- 2	198	2.	12	-	20
BH15-01	BH15	0-0.15	12/10/2016	(0	50	37	9.75	:a	0.50		220	20	9.70	2		50	- 5
BH16-01	BH16	0-0.2	12/10/2016			*			(*)	-		*	0.00			•	*:
BH17-01	BH17	0-0.15	13/10/2016	1 5	2	<0.1	1128	10	629	- 2	100	8:	S26	_ s_)	<0.5	20	<0.5
BH18-01	BH18	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	
BH19-01	BH19	0-0.15	13/10/2016			9	(# <u>6</u>		-	*	140	×	(*)			•	*
BH20-01	BH20	0-0.1	12/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- 2	<0.1	2
BH20-04*	BH20	1.1-1.3	12/10/2016	1.0	F1		5.00		(*)					- 5	-	•	
argeted Soil Bore	5														7.7		
T1-01	T1	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2	<0.1	<0.5
T2-01	T2	0-0.1	13/10/2016	19	- 6	<0.1	(e)	18	3.83		2.00		(* c+c	*: 1	<0.5		<0.5
T3-04	T3	0.7-0.8	13/10/2016	- 2	2	12	22	12		2	120	2	123	2	2	2	26
T4-01	T4	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	12	<0.1	<0.5
T5-01	T5	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	- 80
T6-01	T6	0-0.05	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	12	<0.1	20

	Herbicides																	
	2,4,5-Trichlorophenoxy Acetic Acid	2,4,5-TP (Silvex)	Hedonal	2,4-dichlorophenoxybutanoic acid	2,4-Dichlorprop	2,4,6-Trichlorophenoxy-acetic acid	2-Chlorophenoxyacetic acid	4-Chlorophenoxy acetic acid	Acifluorfen	Atrazine	Bromoxynil	Clopyralid	Dicamba	Dinoseb	2-Methyl-4-chlorophenoxyacetic acid	2-Methyl-4-Chlorophenoxy Butanoic Acid	Месоргор	Triclopyr
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2	0.5	0.5	0.5	0.5	1	0.5	0.5	0.5	0.5
NEPM 1999 Soil HIL D - Commercial/Industrial	5000		9000							2500					5000	5000	5000	
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)																		
NEPM 1999 EIL - Commercial/Industrial (CLAY)																		
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																		
NEPM 1999 Management Limits - Commercial/Industrial (fine)																		
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																		

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																		
irid Based Soil Bo	res		0.															-0.			
BH1-01	BH1	0-0.2	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	-	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH2-01	BH2	0-0.05	13/10/2016	-	170	*			:**	- 65				6.0	-	950		0.00	-5		
BH3-02	BH3	0.5-0.6	13/10/2016			- 4	194	-21	9	. 40	- 14	100	- 2	(1000)	×	S-27		1 14	- 8	1.92	- 25
BH4-01	BH4	0-0.1	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	-	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH4-03	BH4	0.5-0.6	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH5-01	BH5	0-0.1	13/10/2016	-	127	2	- 14		12	- 20	2	0.0	- 2	248	-	-	2		2	1.0	27
BH6-01	8H6	0-0.1	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH7-01	BH7	0-0.1	13/10/2016	-		- × 1	88	*		*3	- 2	(*)		13.83		2.0	- 8		-		
BH8-01	BH8	0-0.15	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH9-01	ВН9	0-0.1	12/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	-	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH9-03	ВН9	0.35-0.45	12/10/2016	-	140		194	-	94	- 40	- 4	(e)	- 2	(8 - 8		340		1.0	*	1.00	- 8
BH10-01	BH10	0-0.15	12/10/2016	1 -		-	्र	-	- %	- 20	18	- 5	- 2	- 3	- 2	- 3-		-	-	-	2
BH11-01	BH11	0-0.1	13/10/2016	-		- 8	36		35	- 55	100	20%	-		-	25	-	100	-	-	- 50
BH11-03*	BH11	0.6-0.75	13/10/2016	-	120	2	19	- 20	- 12	- 47	- 2	243		(849	-	849	2	121	- 2	1.6	21
BH12-01	BH12	0-0.1	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	9	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH13-01	BH13	0-0.35	13/10/2016	-			19					5(*)	*	0.00		1960	-			1.00	
BH13-04	BH13	0-0.35	13/10/2016		121	2 [1/2	20	82	20	2	100	2	1 32	2	23	2	1.14	2	1 %	- 20

	Herbicides																	
	2,4,5-Trichlorophenoxy Acetic Acid	2,4,5-TP (Silvex)	Hedonal	2,4-dichlorophenoxybutanoic acid	2,4-Dichlorprop	2,4,6-Trichlorophenoxy-acetic acid	2-Chlorophenoxyacetic acid	4-Chlorophenoxy acetic acid	Acifluorfen	Atrazine	Bromoxynil	Clopyralid	Dicamba	Dinoseb	2-Methyl-4-chlorophenoxyacetic acid	2-Methyl-4-Chlorophenoxy Butanoic Acid	Mecoprop	Triclopyr
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2	0.5	0.5	0.5	0.5	1	0.5	0.5	0.5	0.5
NEPM 1999 Soil HIL D - Commercial/Industrial	5000		9000							2500					5000	5000	5000	
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)																		
NEPM 1999 EIL - Commercial/Industrial (CLAY)																		
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																		
NEPM 1999 Management Limits - Commercial/Industrial (fine)																		
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																		

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																		
Grid Based Soil Bo	res																				
BH13-05	BH13	1.65-1.8	13/10/2016		(ex.		194	*:	125	*5	- 3	589	· · ·	res :	*	3+03		100	*	138	-8
BH14-01	BH14	0-0.15	12/10/2016	- 2	120	2. [34	-	12	- 20	2	1.0		248	-	-	-	-	-21	- 12	21
BH15-01	BH15	0-0.15	12/10/2016	75	950	- 51	CZ.	51	87	50	:0	0.56	273	100	- 5	0.50	ē	(2)	70	i.e	50
BH16-01	BH16	0-0.2	12/10/2016				>-	-	(*	+3		(*)		0.0					*		•
BH17-01	BH17	0-0.15	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH18-01	BH18	0-0.1	13/10/2016	- 5	650	7.	65	7.3	27	50	- 3	275				370	- 54		7.5	2	. 5
BH19-01	BH19	0-0.15	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	-	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH20-01	BH20	0-0.1	12/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	2	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
BH20-04*	BH20	1.1-1.3	12/10/2016		170	-				- 5	9.5						-	100	-	(e	*:
Targeted Soil Bore	es																				
T1-01	T1	0-0.1	13/10/2016	-	-	-		- 81		- 85			3		- 5	-	- 8		- 8	- 6	-
T2-01	T2	0-0.1	13/10/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5
T3-04	Т3	0.7-0.8	13/10/2016		(2)	2	1.0	25	84	27	2		- 2		2	126	2		2	1.02	- 2
T4-01	T4	0-0.05	13/10/2016	2.	17.0	- 5		•	12	- 51	3	0.5%		(3.5)		5.50		17.	- 5		- 5
T5-01	T5	0-0.05	13/10/2016		-	-	- 12		- 1	- 8	-	18			-	190	-		- 80		- 6.
T6-01	Т6	0-0.05	13/10/2016	-	0.40		162	20	- 0	20	:o	103	2		- 2	197	្ន	100	- ¥1.	1.02	25

			Poly	chlorinat	ted Biphe	nyls							Phenols				
	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochior 1242	Arochlor 1248	Arochior 1254	Arochlor 1260	PCBs (Sum of total)	2,4-dimethylphenol	2-methylphenol	2-nitrophenol	4-chloro-3-methylphenol	2,4-dinitrophenol	4-methylphenol	4-nitrophenol	Total Phenois	Phenolics Total
	mg/kg		mg/kg		mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	2	2	0.4	4	0.2	0.2
NEPM 1999 Soil HIL D - Commercial/Industrial								7								240000	
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)																	
NEPM 1999 EIL - Commercial/Industrial (CLAY)																	
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																	
NEPM 1999 Management Limits - Commercial/Industrial (fine)																	
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																	

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																	
Grid Based Soil Bo	res			1								1.7		. ,						
BH1-01	BH1	0-0.2	13/10/2016	1.2	- 2	-	- 2		2	222	22	100	2	12	. 20	12	1.2	- 2	120	-
BH2-01	BH2	0-0.05	13/10/2016		-	S#9	1.		-	-	-		*	1.65	53		360		::*:	*
BH3-02	BH3	0.5-0.6	13/10/2016	1.2	1-	1300	- 14		18	(Sept.)	-	12.		1 %	47	- 12	(Fee (- 3	100	-
BH4-01	BH4	0-0.1	13/10/2016		- 3	- (-	-	1.0	-	-	- 5	-	- 5	1.5	- 55-	- 8	-	- 3		-
BH4-03	BH4	0.5-0.6	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<2	<2	<0.4	<4	<0.2	<0.2
BH5-01	BH5	0-0.1	13/10/2016	-	-	-	- 2		-			-	-		20	.0	121	- 2		
BH6-01	BH6	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<2	<2	<0.4	<4	<0.2	<0.2
BH7-01	BH7	0-0.1	13/10/2016		-	(le)	-		-	-				- 19	*:	14		*	9.	
BH8-01	BH8	0-0.15	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<2	<2	<0.4	<4	<0.2	<0.2
BH9-01	BH9	0-0.1	12/10/2016	-	-	670	-			250	-			1.5	50		383		10.50	
BH9-03	BH9	0.35-0.45	12/10/2016		-	(14)	-	2.0	-	3-8		1.0		1.02	- P()		2.41		· • • ·	
BH10-01	BH10	0-0.15	12/10/2016		-	-	- 2		- 2		-	-	-					-		-
BH11-01	8H11	0-0.1	13/10/2016			7.50			-		-	1.0	- 6	1.00	- 55	9	180	8	188	*
BH11-03*	BH11	0.6-0.75	13/10/2016	-	- 2	8.6	-		-	848	-	19		1.64	47	14	243	12	120	-
BH12-01	BH12	0-0.1	13/10/2016	-			9		3	-	- 5		- 8	l ē	50	š				9
BH13-01	BH13	0-0.35	13/10/2016					1000		(**):			•	11.00	· •	38	200	(6)	0.00	
BH13-04	BH13	0-0.35	13/10/2016		- 0	100	2	1 1000		. 40	- 2	1 4	20	1 12	20	- 2		- 2	120	2

			Poly	chlorinat	ted Biphe	nyls							Phenols				
	Arochlor 1016	Arochior 1221	Arochior 1232	Arochior 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)	2,4-dimethylphenol	2-methylphenol	2-nitrophenol	4-chloro-3-methylphenol	2,4-dinitrophenol	4-methylphenol	4-nitrophenol	Total Phenois	Phenolics Total
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg							
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	2	2	0.4	4	0.2	0.2
NEPM 1999 Soil HIL D - Commercial/Industrial								7								240000	1
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)										Į.							
NEPM 1999 EIL - Commercial/Industrial (CLAY)																	
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																	
NEPM 1999 Management Limits - Commercial/Industrial (fine)																	
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																	

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																	
Grid Based Soil Bo	ores																			
BH13-05	BH13	1.65-1.8	13/10/2016		- 3-	199	- 14	(100)	*	0+3:		194		1 × 1	*3		(#)	*	1000	× .
BH14-01	BH14	0-0.15	12/10/2016	-		-	-	740		5-5		1.0	- 21	12	20	.0	192	- 22	240	- 2
BH15-01	BH15	0-0.15	12/10/2016			0.7%	- 2	3.00		150	- 2:	(2)	÷:	1.5	50	100	9.58	- 7	1,00	
BH16-01	BH16	0-0.2	12/10/2016		-		-		*	(*)	-		•	-	*3			*		
BH17-01	BH17	0-0.15	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<2	<2	<0.4	<4	<0.2	<0.2
BH18-01	BH18	0-0.1	13/10/2016		-	3.70	- 2		7.	870	-	1.7	- 2	- 2	50	1.5	5.53		1.71	-
BH19-01	BH19	0-0.15	13/10/2016		-		9	-	-			1.4		14	+1		100	96	794	
BH20-01	BH20	0-0.1	12/10/2016	-	- 2	723	2	-		220	- 2	12	2	12	20	12	-	12	-	2
BH20-04*	BH20	1.1-1.3	12/10/2016			3.5				100					- 51	- 1				
Targeted Soil Bore	es																			
T1-01	T1	0-0.1	13/10/2016	-	- 3	-	-	100	-	-	-		- 9	1.5	- 83	- 2		- 3	1.0	-
T2-01	T2	0-0.1	13/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<2	<2	<0.4	<4	<0.2	<0.2
T3-04	T3	0.7-0.8	13/10/2016		- 2	1.	2		2		2	12	20	12	27	- 2		9	120	2
T4-01	T4	0-0.05	13/10/2016			1872		(*)	-	970	-			1.2	21		9.54		9.50	-
T5-01	T5	0-0.05	13/10/2016		-	(+)	- 1		-	-		1 10		-	- 83	- 1	1.0	- 3	(-3	-
T6-01	T6	0-0.05	13/10/2016	-			2		2	197	2	100	-	1.02	20		12	2	100	

	Halogenated Benzenes			Haloge	enated P	henols							li	norganic	s	_			
	Hexachlorobenzene	2,3,4,6-tetrachlorophenol	2,4,5-trichlorophenol	2,4,6-trichloraphenol	2,4-dichlorophenol	2,6-dichlorophenol	2-chlorophenol	Pentachlorophenol	Exchangeable Sodium	Cation Exchange Capacity (CEC)	Exchangeable Magnesium	Exchangeable Calcium	Exchangeable Potassium	Cyanide (Free)	Moisture	pH (aqueous extract)	Clay in soils <2um	DCPA (Chlorthal) Diacid	рн ксі
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	cmol/kg	cmol/kg	cmol/kg	cmol/kg	cmol/kg	mg/kg	%	pH_Unit	% (w/w)	mg/kg	pH units
EQL	0.1	0.2	0.2	0.2	0.2	0.2	0.2	1	0.1	1	0.1	0.1	0.1	0.5	0.1			0.5	
NEPM 1999 Soil HIL D - Commercial/Industrial	80							660						1500					
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)																			
NEPM 1999 EIL - Commercial/Industrial (CLAY)																			
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																			
NEPM 1999 Management Limits - Commercial/Industrial (fine)																			
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																			

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																			
Grid Based Soil Bo	res																					
BH1-01	BH1	0-0.2	13/10/2016	8	1.0	320	-	- 12	125	14	12	27	20	- 2	2	- 2	- 2	7.1	- 2	2	<0.5	2
BH2-01	BH2	0-0.05	13/10/2016	<0.1	9.0	100	S#8	13.5		300		- 65	*:			- 5	-	13	7.5			
BH3-02	BH3	0.5-0.6	13/10/2016	<0.1	727	198		1341	180	(4)	1.20	47	- 25	-2:	- 41		-	4.7	9.1	×	- ×	2
BH4-01	BH4	0-0.1	13/10/2016	<0.1	- 0							- 5	-	-		-	- 6	3.7	8.2	-	<0.5	
BH4-03	BH4	0.5-0.6	13/10/2016	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	- 55	- 61		*		<0.5	8.4	8.8		<0.5	*
BH5-01	BH5	0-0.1	13/10/2016	<0.1	-	-	-	-		941		20	21	-	20	2.	2	3.7	7.4	-	-	-
BH6-01	BH6	0-0.1	13/10/2016	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	-53	51	50	75	-0.	<0.5	3.9	7.7	- 5	<0.5	- 7
BH7-01	BH7	0-0.1	13/10/2016									-83	- 61		*	*	-	13			-	
BH8-01	BH8	0-0.15	13/10/2016	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	25	2	23	2	2	<0.5	3.4	6.9	0	<0.5	-
BH9-01	BH9	0-0.1	12/10/2016	<0.1		373	3.00	3.0	373	573		-53	5	-	-	7.	-	12	6.6	- 5	<0.5	- 2
BH9-03	BH9	0.35-0.45	12/10/2016	¥.	140	200	100	596		7.0		-21	-81				-	17	8.7			
BH10-01	BH10	0-0.15	12/10/2016	<0.1	-	-	-						2		-		-	17	-	- 4	-	-
BH11-01	BH11	0-0.1	13/10/2016	-	186				28	100	100	-55	-51		8	8		14	8.1		- × 1	
BH11-03*	BH11	0.6-0.75	13/10/2016	-	(a)	940	149	122	1.0	721	1.00	1.1	40	7.8	31	0.6	-	26	*	25	¥ 1	
BH12-01	BH12	0-0.1	13/10/2016	<0.1					-		-	-53	-5	-5.	-5	-	- 6	16	3	-	<0.5	9
BH13-01	BH13	0-0.35	13/10/2016			(*)	0.00	695	198	200		*:	-61	*	*	*		4.3	9	*		*
BH13-04	BH13	0-0.35	13/10/2016	2	20	123	-	122	-	-2		25	20	20	23	2	2	7.4	2	2	-	2

	Halogenated Benzenes			Haloge	nated P	henols							1	norganic	s				
	Hexachlorobenzene	2,3,4,6-tetrachlorophenol	2,4,5-trichlorophenol	2,4,6-trichlorophenol	2,4-dichlorophenol	2,6-dichlorophenol	2-chlorophenol	Pentachlorophenol	Exchangeable Sodium	Cation Exchange Capacity (CEC)	Exchangeable Magnesium	Exchangeable Calcium	Exchangeable Potassium	Cyanide (Free)	Moisture	pH (aqueous extract)	Clay in soils <2um	DCPA (Chlorthal) Diacid	pH kcl
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	cmol/kg	cmol/kg	cmol/kg	cmol/kg	cmol/kg	mg/kg	%	pH_Unit	% (w/w)	mg/kg	pH units
EQL	0.1	0.2	0.2	0.2	0.2	0.2	0.2	1	0.1	1	0.1	0.1	0.1	0.5	0.1			0.5	
NEPM 1999 Soil HIL D - Commercial/Industrial	80							660						1500					
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)																			
NEPM 1999 EIL - Commercial/Industrial (CLAY)																			
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)																			i j
NEPM 1999 Management Limits - Commercial/Industrial (fine)																			
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)																			

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date																			
Grid Based Soil Bo	res																					
BH13-05	BH13	1.65-1.8	13/10/2016	-					585	(*)		- 41	-81	*:		*	- 1	*:		*		9.8
BH14-01	BH14	0-0.15	12/10/2016	-	100		120	12-1	142	941	ie:	20	- 2	-	2	- 2	2.]	16	8	-	-	-
BH15-01	BH15	0-0.15	12/10/2016		350	120		1.20	0.54	9.75	1.75	50	- 51	- 50	75	- 51	-2:	18	7.4	-		- 73
BH16-01	BH16	0-0.2	12/10/2016					(0)	(*)	1.0	1.00	-	•	•	*		-	13	8.7	*		
BH17-01	BH17	0-0.15	13/10/2016	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	21	2	- 20	2	2	<0.5	21	9	0	<0.5	0
BH18-01	BH18	0-0.1	13/10/2016	<0.1	-				275			50	5		•	-	-	16		-	-	
BH19-01	BH19	0-0.15	13/10/2016		-				341	(*)		+:	+		*		-	17	*	-	<0.5	-
BH20-01	BH20	0-0.1	12/10/2016	<0.1	125	-		120	12	- 2		27	2)	- 20	- 2	2	- S	11	6.9	ু	<0.5	2
BH20-04*	BH20	1.1-1.3	12/10/2016			5 * 0						6.6	47	9.3	29	2.1		22		61	-	
Targeted Soil Bore	15																					
T1-01	T1	0-0.1	13/10/2016	<0.1	-					-		- 55	-	3.	- 2	-	- 6	21	-	-	-	
T2-01	T2	0-0.1	13/10/2016	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	- 1	-61				<0.5	18	2		<0.5	
T3-04	T3	0.7-0.8	13/10/2016	2	. 33	123		12.0	140	221		27	2	2	2	2.	2	26	2	2	-	2
T4-01	T4	0-0.05	13/10/2016	<0.1	:#:I		(3.5)	0.50	(12)	9.58		- 51	*:	•	-	- 5	-5	16	-2.	-	-	
T5-01	T5	0-0.05	13/10/2016	<0.1	-		-	-	180	(*)	-	-31			-	-	-	20	8.1	-	-	
T6-01	Т6	0-0.05	13/10/2016	<0.1	140	100		1027	12	72	12	20	- 25	20	20			19		ু		2

	Anions		Nutr	ients		Ot	her				SPOCAS	ŝ		
	Sulphate	Ammonia	Nitrate (as N)	Nitrite (as N)	тос	3,5-Dichlorobenzoic acid	Actril (loxynil)	Peroxide Oxidisable Sulfur	Acid Reacted Calcium	Calcium in Peroxide	KCI Extractable Calcium	KCI Extractable Magnesium	Magnesium in Peroxide	Sulfur in Peroxide
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		_	%	%	%	%	%	%	%
QL	10	0.5	0.5	0.1	1000	0.5	1	0.005	0.005	0.005	0.005	0.005	0.005	0.00
NEPM 1999 Soil HIL D - Commercial/Industrial	-						_		_					
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)	-													
NEPM 1999 EIL - Commercial/Industrial (CLAY)														
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)														
NEPM 1999 Management Limits - Commercial/Industrial (fine)														
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)														

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date														
rid Based Soil Bo	res			1												-0.	13
BH1-01	BH1	0-0.2	13/10/2016	- 2	2.4	2.1	<0.1	27	<0.5	<1	2		2	1.5	- 8	[a'	2
BH2-01	BH2	0-0.05	13/10/2016	-	1.00	•		- 53	- 3		36	5 - 8		850		(20.1	
BH3-02	BH3	0.5-0.6	13/10/2016	- 4	19	-	9	1 40	N.	1583	22		×	827	-	1 20	
BH4-01	BH4	0-0.1	13/10/2016		2	<0.5	<0.1	- 5	<0.5	<1	- 3	- 3-	- 9	-	- 8		
BH4-03	BH4	0.5-0.6	13/10/2016	68	7.1	<0.5	0.3	-	<0.5	<1		2.0		1.00	-	1997	
BH5-01	BH5	0-0.1	13/10/2016	-	1.5	0.5	0.5	20	2	2.0	7	1.0	-	-			-
BH6-01	BH6	0-0.1	13/10/2016	- 51	4.9	<0.5	2.7	50	<0.5	<1	- 25		- 5	150	- 5	-31	-
BH7-01	BH7	0-0.1	13/10/2016	F (. 3	- 2					2013			
BH8-01	BH8	0-0.15	13/10/2016	2	150	13	<0.1	21	<0.5	<1	- 0	(Ref.)	9	(San)	2	1 91	
BH9-01	BH9	0-0.1	12/10/2016	-	1.5	1	<0.1	50	<0.5	<1		::=:::			-		
BH9-03	ВН9	0.35-0.45	12/10/2016	<10	1.74		:-		120	7.00	- 2	(848	-	3-62	-	194	
BH10-01	BH10	0-0.15	12/10/2016	<10		-	- 8-	-2	-		- 2		-			-	
BH11-01	BH11	0-0.1	13/10/2016	-	2.6	-51	35	-55		284	8		*	98	-	-	
BH11-03*	BH11	0.6-0.75	13/10/2016	110	19	. 40	- 1	12,000	- 2	743	12.	12.0	-	849	-	14:	
BH12-01	BH12	0-0.1	13/10/2016	-	2.3	<0.5	0.1	55	<0.5	<1	9		9	500	- 5		
BH13-01	BH13	0-0.35	13/10/2016		19	•:	18	-		(*)	*	0 . 0		100			
BH13-04	BH13	0-0.35	13/10/2016	<10	1 4	2	32	20 (2	1.52	¥		2	327	2	1.19	1

	Anions		Nutr	ients		Oti	her				SPOCAS			
	Sulphate	Ammonia	Nitrate (as N)	Nitrite (as N)	тос	3,5-Dichlorobenzoic acid	Actril (loxynil)	Peroxide Oxidisable Sulfur	Acid Reacted Calcium	Calcium in Peroxide	KCI Extractable Calcium	KCI Extractable Magnesium	Magnesium in Peroxide	Sulfur in Peroxide
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%	%	%
EQL	10	0.5	0.5	0.1	1000	0.5	1	0.005	0.005	0.005	0.005	0.005	0.005	0.005
NEPM 1999 Soil HIL D - Commercial/Industrial														
NEPM 1999 EIL - Commercial/Industrial (Silty CLAY)														
NEPM 1999 EIL - Commercial/Industrial (CLAY)														
NEPM 1999 Soil HSL D for Vapour Intrusion - Comm./Indust. (Clay, 0-1mBGL)														
NEPM 1999 Management Limits - Commercial/Industrial (fine)														
NEPM 1999 Soil ESLs - Commercial/Industrial (fine)														

Sample ID	Sample Location	Sample Depth Range (mBGL)	Sample Date														
Grid Based Soil Bo	res																
BH13-05	BH13	1.65-1.8	13/10/2016	-	(pr	- 41	1.00	- 10		188	0.03	7.3	7.5	0.21	0.034	0.3	0.05
BH14-01	BH14	0-0.15	12/10/2016	-	1.54	-	12	20	9	-		248	-		-		
BH15-01	BH15	0-0.15	12/10/2016	51	3.5	<0.5	<0.1	50		0.56	275	8.00	- 5	0.50	0	17.1	70
BH16-01	BH16	0-0.2	12/10/2016		-	•	-			(€)	-	0.00			-		*
BH17-01	BH17	0-0.15	13/10/2016	2	2	<0.5	0.8	25	<0.5	<1	0	(feet		120	2	12	2
BH18-01	BH18	0-0.1	13/10/2016	330	1.5	<0.5	0.1	53	-	276		8.00		370	- 50	- 10	- 53
BH19-01	BH19	0-0.15	13/10/2016	-	3.6	15	6	- 4	<0.5	<1	-	S-2	*	-	-		*
BH20-01	BH20	0-0.1	12/10/2016	2	12	- 20	2	22	<0.5	<1	2	100	2	125	- 2	1 67	2
BH20-04*	BH20	1.1-1.3	12/10/2016	-				<1000							-		-
Targeted Soil Bore	ıs																
T1-01	T1	0-0.1	13/10/2016	-	- 8	3.		1 8 1			3		-	-	- 8		- 8
T2-01	T2	0-0.1	13/10/2016		<0.5	7.7	<0.1	-	<0.5	<1	-	13 0 .0		1900	-		*
T3-04	Т3	0.7-0.8	13/10/2016	-	<0.5	<0.5	<0.1	25	2		2		2	120	2	1.	2
T4-01	T4	0-0.05	13/10/2016	-			17	- 51	- 2	3.53		13.53		5.50	- 5	25.	-5
T5-01	T5	0-0.05	13/10/2016	-			-	- 8		-	-			-	-		
T6-01	T6	0-0.05	13/10/2016	-	2.1	0.8	<0.1	20.	- 3	10	2		2	100		100	

Inputs	
Select contaminant from	n list below
Cu	
Below needed to calcula aged ACLs	ate fresh and
Enter cation exchange of thiourea method) (value cmoldkg dwt)	
40	
Enter soil pH (calcium method) (values from 1	
7	
Enter organic carbon co	ontent (%OC)
1	
Below needed to calcula	ate fresh and
aged ABCs Measured background (concentration
aged ABCs	concentration
aged ABCs Measured background ((mg/kg). Leave blank if	concentration
aged ABCs Measured background ((mg/kg), Leave blank if value 1 or for fresh ABCs only	concentration no measured
aged ABCs Measured background of (mg/kg). Leave blank if value 1 or for fresh ABCs only Enter iron content (aqual (values from 0 to 50%) to	concentration no measured a regia method o obtain
aged ABCs Measured background (mg/kg). Leave blank if value 1 or for fresh ABCs only Enter iron content (aqua	concentration no measured a regia method o obtain
aged ABCs Measured background of (mg/kg). Leave blank if value 1 or for fresh ABCs only Enter iron content (aqual (values from 0 to 50%) to estimate of background	concentration no measured a regia method o obtain
aged ABCs Measured background (mg/kg). Leave blank if value 1 or for fresh ABCs only Enter iron content (aqualues from 0 to 50%) to estimate of background 2.5	concentration no measured a regia method o obtain concentration
aged ABCs Measured background of (mg/kg). Leave blank if value 1 or for fresh ABCs only Enter iron content (aqual (values from 0 to 50%) to estimate of background 2.5 or for aged ABCs only	concentration no measured a regia method o obtain concentration
aged ABCs Measured background of (mg/kg). Leave blank if value 1 or for fresh ABCs only Enter iron content (aquity (values from 0 to 50%) to estimate of background 2.5 or for aged ABCs only Enter State (or closest \$5000)	concentration no measured a regia method o obtain concentration

Out	puts	
Land use	Cu soil-specific EIL:	
	(mg contaminant/kg dry	
	Fresh	Aged
National parks and areas of high conservation value	55	75
Urban residential and open public spaces	120	220
Commercial and industria	170	330

Inputs	
Select contaminant from list below	4
Cu	
Below needed to calculate fresh a aged ACLs	nd
Enter cation exchange capacity (s thiourea method) (values from 0 to cmoldkg dwt)	
47	
Enter soil pH (calcium chloride method) (values from 1 to 14)	
7	
Enter organic carbon content (%C	101
(values from 0 to 50%)	3776
1	
Below needed to calculate fresh a aged ABCs	nd
aged ABCs Measured background concentrat [mg/kg]. Leave blank if no measu	ion
aged ABCs Measured background concentrat (mg/kg). Leave blank if no measu value	ion
aged ABCs Measured background concentrat (mg/kg). Leave blank if no measu value	ion
aged ABCs Measured background concentrat (mg/kg). Leave blank if no measu value 1 or for fresh ABCs only	ion red
aged ABCs Measured background concentrat (mg/kg). Leave blank if no measu value	ion red
aged ABCs Measured background concentrat (mg/kg). Leave blank if no measu value 1 or for fresh ABCs only Enter iron content (aqua regia me	ion red thod)
aged ABCs Measured background concentrat [mg/kg]. Leave blank if no measu value 1 or for fresh ABCs only Enter iron content (aqua regia me (values from 0 to 50%) to obtain	ion red thod)
aged ABCs Measured background concentrat [mg/kg]. Leave blank if no measu value 1 or for fresh ABCs only Enter iron content (aqua regia me (values from 0 to 50%) to obtain estimate of background concentra	ion red thod)
aged ABCs Measured background concentrat [mg/kg]. Leave blank if no measu value 1 or for fresh ABCs only Enter iron content (aqua regia me (values from 0 to 50%) to obtain estimate of background concentra 2.5	ion red thod)
aged ABCs Measured background concentrat [mg/kg]. Leave blank if no measu value 1 or for fresh ABCs only Enter iron content (aqua regia me (values from 0 to 50%) to obtain estimate of background concentra 2.5 or for aged ABCs only	ion red thod)
aged ABCs Measured background concentrat [mg/kg]. Leave blank if no measu value 1 or for fresh ABCs only Enter iron content (aqua regia me (values from 0 to 50%) to obtain estimate of background concentra 2.5 or for aged ABCs only Enter State (or closest State)	ion red thod)

Outputs		
Land use	Cu soil-specific EILs	
	(mg contamin	ant/kg dry soil)
	Fresh	Aged
National parks and areas of high conservation value	60	75
Urban residential and open public spaces	120	230
Commercial and industria	180	330

Inputs Select contaminant from list below Ni Below needed to calculate fresh and aged ACLs Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt) 40 Below needed to calculate fresh and aged ABCs Measured background concentration
Ni Below needed to calculate fresh and aged ACLs Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt) 40 Below needed to calculate fresh and aged ABCs
Below needed to calculate fresh and aged ACLs Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt) 40 Below needed to calculate fresh and aged ABCs
aged ACLs Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmole/kg dwt) 40 Below needed to calculate fresh and aged ABCs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt) 40 Below needed to calculate fresh and aged ABCs
thiourea method) (values from 0 to 100 cmoldkg dwt) 40 Below needed to calculate fresh and aged ABCs
40 40 Below needed to calculate fresh and aged ABCs
40 Below needed to calculate fresh and aged ABCs
Below needed to calculate fresh and aged ABCs
Below needed to calculate fresh and aged ABCs
aged ABCs
aged ABCs
aged ABCs
aged ABCs
aged ABCs
aged ABCs
aged ABCs
aged ABCs
aged ABCs
aged ABCs
aged ABCs
Measured background concentration
Constitute I amount that the annual and
(mg/kg). Leave blank if no measured value
(CONT)
4
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain
estimate of background concentration
2.5
as for and ABCs only
or for aged ABCs only
Enter State (or closest State)
Lines could for crosper crute)
SA
Enter traffic volume (high or low)
Lines warne volume (riight of 10w)
high

Outputs		
Land use	Ni soil-specific EILs	
National parks and areas of high conservation	Fresh 20	Aged 75
value Urban residential and open public spaces	140	430
Commercial and industria	270	730

	Inputs
Select cor	ntaminant from list below
231001 301	Ni Ni
Below nee	eded to calculate fresh and
aged ACL	.\$
Enter cati	on exchange capacity (silver
thiourea n	nethod) (values from 0 to 100
cmole/kg	dwt)
	47
	=
	eded to calculate fresh and
aged ABC	Ss .
aged ABC Measured	s background concentration
aged ABC Measured (mg/kg). L	Ss .
aged ABC Measured	s background concentration eave blank if no measured
aged ABC Measured (mg/kg). L	s background concentration
aged ABC Measured (mg/kg). L value or for fres	ts background concentration eave blank if no measured 4 th ABCs only
aged ABC Measured (mg/kg). L value or for fres Enter iron	ts
aged ABC Measured (mg/kg). L value or for fres Enter iron (values fre	the ABCs only a content (aqua regia method om 0 to 50%) to obtain
aged ABC Measured (mg/kg). L value or for fres Enter iron (values fre	background concentration eave blank if no measured 4 th ABCs only a content (aqua regia method om 0 to 50%) to obtain of background concentration
aged ABC Measured (mg/kg). L value or for fres Enter iron (values fre	the ABCs only a content (aqua regia method om 0 to 50%) to obtain
aged ABC Measured (mg/kg). L value or for fres Enter iron (values frestimate of	background concentration eave blank if no measured 4 ch ABCs only content (aqua regia method om 0 to 50%) to obtain of background concentration 2.5
aged ABC Measured (mg/kg). L value or for fres Enter iron (values frestimate of	background concentration eave blank if no measured 4 th ABCs only a content (aqua regia method om 0 to 50%) to obtain of background concentration
aged ABC Measured (mg/kg). L value or for fres Enter iron (values freestimate of or for agen	background concentration eave blank if no measured 4 ch ABCs only content (aqua regia method om 0 to 50%) to obtain of background concentration 2.5
aged ABC Measured (mg/kg). L value or for fres Enter iron (values freestimate of or for agen	the ABCs only concentration background concentration cave blank if no measured 4 ch ABCs only content (aqua regia method om 0 to 50%) to obtain background concentration 2.5 d ABCs only te (or closest State)
aged ABC Measured (mg/kg). L value or for fres Enter iron (values freestimate of or for agen	sh ABCs only to background concentration Leave blank if no measured 4 sh ABCs only to content (aqua regia method to 50%) to obtain to background concentration 2.5 d ABCs only
aged ABC Measured (mg/kg). L value or for fres Enter iron (values frestimate of or for ages Enter State	the ABCs only a concentration of background concentration. At the ABCs only a content (aqua regia method om 0 to 50%) to obtain of background concentration 2.5 ABCs only te (or closest State)
aged ABC Measured (mg/kg). L value or for fres Enter iron (values frestimate of or for ages Enter State	the ABCs only concentration background concentration cave blank if no measured 4 ch ABCs only content (aqua regia method om 0 to 50%) to obtain background concentration 2.5 d ABCs only te (or closest State)

Out	puts	
Land use	Ni soil-specific EIL	
	Fresh	Aged
National parks and areas of high conservation yalue	25	85
Urban residential and open public spaces	150	480
Commercial and industria	300	810

Inputs	
Select contaminant from list belo	W
Zn Below needed to calculate fresh aged ACLs	and
Enter cation exchange capacity (thiourea method) (values from 0 cmolc/kg dwt)	
40	
Enter soil pH (calcium chloride method) (values from 1 to 14)	
7	
Below needed to calculate fresh aged ABCs Measured background concentra	tion
aged ABCs	tion
aged ABCs Measured background concentra (mg/kg). Leave blank if no measu	tion
aged ABCs Measured background concentra (mg/kg). Leave blank if no measu value	tion ured ethod)
aged ABCs Measured background concentra (mg/kg). Leave blank if no measurable 2 or for fresh ABCs only Enter iron content (aqua regia m (values from 0 to 50%) to obtain estimate of background concentra	tion ured ethod)
aged ABCs Measured background concentra (mg/kg). Leave blank if no measurable 2 or for fresh ABCs only Enter iron content (aqua regia m (values from 0 to 50%) to obtain estimate of background concentra 2.5	tion ured ethod)
aged ABCs Measured background concentra (mg/kg). Leave blank if no measurable 2 or for fresh ABCs only Enter iron content (aqua regia measurable) to 50%) to obtain estimate of background concentra 2.5 or for aged ABCs only	tion ured ethod)
aged ABCs Measured background concentra (mg/kg). Leave blank if no meast value 2 or for fresh ABCs only Enter iron content (aqua regia m (values from 0 to 50%) to obtain estimate of background concentra 2.5 or for aged ABCs only Enter State (or closest State)	tion ared ethod) ation

Out	puts	
Land use	Zn soil-specific EIL	
	Fresh	Aged
National parks and areas of high conservation value	90	190
Urban residential and open public spaces	340	880
Commercial and industria	540	1400

Inputs
Select contaminant from list below
Zn
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmoldkg dwt)
47
Enter soil pH (calcium chloride method) (values from 1 to 14)
7
Below needed to calculate fresh and
aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
8
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain
estimate of background concentration 2.5
U.S
or for aged ABCs only
Enter State (or closest State)
SA
Enter traffic volume (high or low)

Outputs		
Land use	Zn soil-specific EILs	
	Fresh	Aged
National parks and areas of high conservation yalue	95	200
Urban residential and open public spaces	350	890
Commercial and industria	550	1400

Inputs
Select contaminant from list below
РЬ
Below needed to calculate fresh and
aged ACLs
Below needed to calculate fresh and
aged ABCs
aged ABCS
or for fresh ABCs only
- f I ADCI-
or for aged ABCs only

Out	puts	
Land use	Lead gen	eric EILs
	(mg contamin	ant/kg dry soil)
	Fresh	Aged
National parks and areas of high conservation value	110	470
Urban residential and open public spaces	270	1100
Commercial and industria	440	1800

Appendix I

Water Chemical Summary Tables

			_				_					Metals											
	Aluminium (Filtered)	Antimony (Filtered)	Arsenic (Filtered)	Sarium (Filtered)	Seryilium (Filtered)	3oron (Filtered)	Cadmium (Filtered)	Chromium (hexavalent)	Chromium (III+VI) (Filtered)	Cobalt (Filtered)	Copper (Filtered)	ron (Filtered)	.ead (Filtered)	Manganese (Filtered)	Mercury (Filtered)	Molybdenum (Filtered)	Nickel (Filtered)	selenium (Filtered)	Silver (Filtered)	fhallium (Filtered)	fin (Filtered)	Janadium (Filtered)	Zinc (Filtered)
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
PQL	0.01	0.001	0.001	0.001	0.0005	0.005	0.0001	0.005	0.001	0.001	0.001	0.01	0.001	0.005	0.00005	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2- 4mBGL)																							
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)							0.0055		0.0274	0.001	0.0013		0.0044		0.0004		0.07		0.0014			0.1	0.015
NHMRC 2008 Recreation Health		0.03	0.07	7		40	0.02	0.5			20		0.1	5	0.01	0.5	0.2	0.1					
NHMRC 2008 Recreation Aesthetic											1	0.3		0.1									3
ANZECC 2000 Primary Industries, Aquaculture and human consumption – saltwater production	0.01		0.03				0.0005		0.02		0.005	0.01	0.001	0.01	0.001		0.1	0.01	0.003			0.1	0.005
ANZECC 2000 Primary Industries - Livestock Drinking Water	5		0.5			5	0.01		1	1	0.4#		0.1		0.002	0.15	1	0.02					20

Sample ID	Sample Date																							
Groundwater Grab Sample																								
GW1	12/10/2016	<0.01	< 0.001	0.007	0.14	<0.0005	3	<0.0001	<0.005	<0.001	0.004	0.004	0.012	< 0.001	0.036	<0.00005	0.007	0.002	0.01	<0.001	<0.001	<0.001	0.004	0.017
GW1 (Silica Gel Cleanup)	12/10/2016	741		12		-	- 12	- 1	12	-	- 0		3+5	-	-	(a)	27	12	848	14	[2	9	74	-
Liquid Waste - Disused Septic																								
GW2	13/10/2016	0.018	<0.001	0.03	0.041	<0.0005	0.29	<0.0001	. 92	<0.001	0.001	0.003	2.8	0.003	0.046	<0.00005	<0.001	0.002	0.002	<0.001	<0.001	0.005	<0.001	0.031
GW2 (Silica Gel Cleanun)	13/10/2016	1	. 2	12				- 2	- 52			127	1000			12	-		100	100				. 3

GW2 (Silica Gel Cleanup)
A**: recommended concentrations of TDS in drinking water for livstock are given
in ANZECC 2000 Table 4.3.1.
most conservative value for sheep

20/12/2016

								P	AH		_						PAH othe
	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,l)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH	Benzo(a)pyrene TEQ	Benzo(b)&(k)fluoranthene
	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L
PQL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	5	2
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2- 4mBGL)																	
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)												70					
NHMRC 2008 Recreation Health					0.01										0.01		
NHMRC 2008 Recreation Aesthetic																	
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production																	
ANZECC 2000 Primary Industries - Livestock Drinking Water																	

Sample ID	Sample Date																	
Groundwater Grab Sample																		
GW1	12/10/2016	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	4	<1	<5	<2
GW1 (Silica Gel Cleanup)	12/10/2016	· -	- 5	13	1 2		15	18.5	848	248		14	12	-	100		2	ů.
Liquid Waste - Disused Septic																		
GW2	13/10/2016	- 2	- E	. 2	2	- 20			120	150	-	02	- %	- 32	- 2	- 2	- ¥_	- 2
GW2 (Silica Gel Cleanup)	23/20/2010	- 2				20				- 26	-	34	- 2	- %	- E-	- 1	_ 2	. 2

			_		77	кн	_						BTEX		
	TRH C6-C9	TRH >C10-C14	TRH >C15-C28	TRH >C29 - C36	TRH C6-C10	TRH C6-C10 less BTEX (F1)	TRH >C10-C16	TRH >C10-C16 less Napthalene (F2)	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)
	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	µg/L	μg/L	HB/L	µg/L	μg/L
PQL	10	50	100	100	10	10	50	50	100	100	1	1	1	1	2
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2- 4mBGL)						6000					5000				
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)											700				
NHMRC 2008 Recreation Health											1	800	300		
NHMRC 2008 Recreation Aesthetic												250	3		
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production															
ANZECC 2000 Primary Industries - Livestock Drinking Water															

Sample ID	Sample Date															
Groundwater Grab Sample		u .														
GW1	12/10/2016	<50	<50	210	120	<50	<50	81	81	250	<100	<5	<5	<5	<5	<10
GW1 (Silica Gel Cleanup)	12/10/2010		<50	<100	<100	. 8	- 2	<50	<50	<100	<100	23		1.0	14	141
Liquid Waste - Disused Septic																
GW2	13/10/2016	1 4	330,000	1,200,000	28,000	2	2	710,000	- ÷	830,000	13,000	. 23	- 41	140	100	1.3
GW2 (Silica Gel Cleanup)	13/10/2016	- 5	230,000	940,000	17,000	6	- 23	530,000	- 5	650,000	7,100	. 2		. 4		-

	-						Chlo	rinated I	Hydrocai	rbons		_				
	版 1,1,1,2-tetrachloroethane	五1,1,1-trichloroethane	五1,1,2,2-tetrachloroethane	表 1,1,2-trichloroethane	五1,1-dichloroethane	和 1,1-dichloroethene	1,1-dichloropropene	5 1,2,3-trichloropropane	1,2-dibromo-3-chloropropane	五 1,2-dichloroethane	五1,2-dichloropropane	五 1,3-dichloropropane	五 2,2-dichloropropane	图 Bromochloromethane	Bromodichloromethane	М Вromoform
PQL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2- 4mBGL)																
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)				1900												
NHMRC 2008 Recreation Health						30				3						
NHMRC 2008 Recreation Aesthetic																
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production																
ANZECC 2000 Primary Industries - Livestock Drinking Water																

Sample ID	Sample Date																
Groundwater Grab Sample																	
GW1	12/10/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
GW1 (Silica Gel Cleanup)	12/10/2010	31		28	- 24		1.65	140	1	~	14	- Si			4	0	2
Liquid Waste - Disused Septic																	
GW2	13/10/2016	- 2	- 22	122	- 20		100	100	350		- 04	- 82	- 12	- %	- 2	- 2	- 2
GW2 (Silica Gel Cleanup)	13/10/2010		- 4	. 2	. 20					-	- 3-	14	-8-	13.	- 3		- 2

		į.				Chlo	rinated	Hydrocai	rbons			_		_
PQL	T Carbon tetrachloride	T Chlorodibromomethane	T/Stri Chloroethane	T Chloroform	01 Chloromethane	ds-1,2-dichloroethene	ds-1,3-dichloropropene	7 Dibromomethane	Hexachlorobutadiene	Trichloroethene (TCE)	Tetrachloroethene (PCE)	trans-1,2-dichloroethene	trans-1,3-dichloropropene	ν Vinyl chloride
NEPM 1999 GW HSL D for Vapour Intrusion – Commercial/Industrial (Sand, 2- 4mBGL)														
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)														
NHMRC 2008 Recreation Health									0.7		50			0.3
NHMRC 2008 Recreation Aesthetic														
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production														
ANZECC 2000 Primary Industries - Livestock Drinking Water														

Sample ID	Sample Date														
Groundwater Grab Sample															
GW1	12/10/2016	<5	<5	<50	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<50
GW1 (Silica Gel Cleanup)	12/10/2010		28			1.5	1945	141	-	14	× .			- 2	
Liquid Waste - Disused Septic															
GW2	13/10/2016	. 2	122	20			160	-	- 5	- 04	- 82	- 2	- %	-3-	-2
GW2 (Silica Gel Cleanup)	13/10/2016	. 2		. 20					-	- 24	14	-8	13.	- 3	

A*: recommended concentrations of TDS in drinking water for livstock are given in ANZECC 2000 Table 4.3.1
most conservative value for sheep

	-								Organo	chlorine I	Pesticide	8							
	7,4,4-DDD	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	74-DDT	a-BHC	P-BHC	d-BHC d-BHC	是 BHC (Lindane)	Aldrin Aldrin	(表 Dieldrin	Chlordane (cis)	Alordane (trans)	Endosulfan I	다 Endosulfan II	Endosulfan sulphate	√a Endrin	Endrin aldehyde	7/8 Heptachlor	Heptachlor epoxide	Methoxychlor
PQL	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2- 4mBGL)																			
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)															0.008				
NHMRC 2008 Recreation Health			20				20										0.3		300
NHMRC 2008 Recreation Aesthetic																			
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production							0.004			<-0.0	004>	0.001							
ANZECC 2000 Primary Industries - Livestock Drinking Water																			

Sample ID	Sample Date																			
Groundwater Grab Sample	**																			
GW1	12/10/2016	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
GW1 (Silica Gel Cleanup)	12/10/2016	1 4	12	-	15		. 2	155	15	÷	- 24			+	2	- 1	1.2	-	15	-
Liquid Waste - Disused Septic																				
GW2	13/10/2016		- 02	- 82	- 22	- 2	-2-	050	- 2	- 2		- 25	. 2	- 2	- 2	-	2	- 23		1
GW2 (Silica Gel Cleanup)	13/10/2016	. 34	- 12	- 9	- 2	- 2	2		1.3	. 2	-			- 4		-	1. 42	20	-	

A*: recommended concentrations of TDS in drinking water for livstock are given in ANZECC 2000 Table 4.3.1
most conservative value for sheep

			Palychlo	rinated	Bipheny	s			_			Phenol	s			
	Arochior 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochior 1254	Arochlor 1260	2,4-dimethylphenol	2-methylphenol	2-nitrophenol	4,6-Dinitro-2-methylphenol	4-chloro-3-methylphenol	2,4-dinitrophenol	4-methylphenol	4-nitrophenol	Total Phenols
	μg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	mg/L	mg/L	μg/L	µg/L
PQL	2	2	2	2	2	2	2	1	1	1	10	1	0.01	0.002	20	1
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2- 4mBGL)																
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)																400
NHMRC 2008 Recreation Health																
NHMRC 2008 Recreation Aesthetic																
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production																
ANZECC 2000 Primary Industries - Livestock Drinking Water																

Sample ID	Sample Date																
Groundwater Grab Sample	*																
GW1	12/10/2016	<2	<2	<2	<2	~	<2	2	<1	<1	<1	<10	<1	<0.01	<0.002	<20	<1
GW1 (Silica Gel Cleanup)	12/10/2016	-	4	14	12	- 12	3		- 2	2		- 25	22	1 27	. *	28	- 2
Liquid Waste - Disused Septic																	
GW2	13/10/2016		250	- 54	- 82	- 2	- 12	- 2	- 2	- 2	- 2	- 2	- 29	. 29	, E	250	- 1
GW2 (Silica Gel Cleanup)	13/10/2010	- 3	-	- 3	-3-	-%-	- %	-3-	-		- 8		- 25	. 2	. 3	- 1	-

A*: recommended concentrations of TDS in drinking water for livstock are given in ANZECC 2000 Table 4.3.1
most conservative value for sheep

	-			Ha	logenate	d Benze	nes			<u> </u>	Halo	genated	Hydroca	rbons			Halog	enated I	henois		
POL	- (1,2,4-trichlorobenzene	1,2-dichlorobenzene	+ 译 1,3-dichlorobenzene	1,4-dichlorobenzene	2-chlorotoluene	1/2 4-chlorotoluene	所 Bromobenzene	Chlorobenzene	는 는 Hexachlorobenzene	1,2-dibromoethane	Bromomethane	Dichlorodiffuoromethane	Trichlorofluoromethane	- 表 2,3,4,6-tetrachlorophenol	本 2,4,5-trichlorophenol	7 2,4,6-trichlorophenol	1 英 2,4-dichlorophenol	2,6-dichlorophenol	다 톤 2-chlorophenol	o 전 Pentachlorophenol
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2-4mBGL)	1	-	_	Ė	Ė	1.*.			_	0.2	Ė	10		10	Ė	•		_	_	-	
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)		80																			22
NHMRC 2008 Recreation Health			1500		40				300								20	200		300	10
NHMRC 2008 Recreation Aesthetic			1	20	0.3												2	0.3		0.1	
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production																					
ANZECC 2000 Primary Industries - Livestock Drinking Water																					

Sample ID	Sample Date																					
Groundwater Grab Sample	- ***																					
GW1	12/10/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.2	<5	<50	<50	<50	<1	<1	<1	<1	<1	<1	<5
GW1 (Silica Gel Cleanup)	12/10/2016	10.00	23	- 3	16	141	-	(a)	3.	12	12	-	\$	2	-				1 24	-	-	- 3
Liquid Waste - Disused Septic																						
GW2	13/10/2016		20		.020	1766	100	277	122	12	12	- 52	- 92		-	- 2	. 2	- 2	- 22	- 23		12
GW2 (Silica Gel Cleanup)	13/10/2010		. 2		. 45.			14	- 3-	- 0	1.78		-3	-		- ž	. ž	. 8	. 1	20		- 2

A*: recommended concentrations of TDS in drinking water for livstock are given in ANZECC 2000 Table 4.3.1
most conservative value for sheep

20/12/2016

		Inorganics			Cat	ions			Anions		Ionic Balance		Alka	linity	
PQL	Coanide Total	БД me/L 5	Salinity as NaCl	Coldum Sea	mg/L 0.5	mg/L	mg/L	mg/L 1	mg/L	7 Sulphate	% Ionic Balance	or Bicarbonate as CaCO3	carbonate as CaCO3	ы hydroxide	on Realinity (total)
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2-4mBGL)	0.004	1.60		0.5		9.3	0.0	Ė	0.1	-				3000	
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)	0.004														
NHMRC 2008 Recreation Health									15	5000					
NHMRC 2008 Recreation Aesthetic										250					
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production	0.005	3000-33000													>20
ANZECC 2000 Primary Industries - Livestock Drinking Water		A*		1000					2	1000					

Sample ID	Sample Date															
Groundwater Grab Sample		11														
GW1	12/10/2016	<0.004	18000*	15	380	580	140	5300	8500	0.5	620	-0.34	2500	<5	<5000	2500
GW1 (Silica Gel Cleanup)	12/10/2010		1941	2	-		201	3.	12	- 2		12	12	- 2		746
Liquid Waste - Disused Septic																
GW2	13/10/2016		- 2	2	100	283	250	- 1	- 82	2	- 1	_2_	12	<u>a</u>		
GW2 (Silica Gel Cleanup)	13/10/1010			- 2		- 6	12.		- S2	~	- 8	- %	- S-	-%-	- 5-	- 65.

				Nutrients								MAH							Phtha	alates			Solvents
	Ammonia	Nitrate (as N)	Nitrate (by calculation: 1 mg/L nitrate-N = 4.43 mg/L nitrate)	Nitrite (as N)	Nitrite (by calculation: 1 mg/L nitrite-N = 3.29 mg/L nitrite)	Kjeldahi Nitrogen Total	Phosphorus	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	Isopropylbenzene	n-butylbenzene	n-propylbenzene	p-isopropyltoluene	sec-butylbenzene	Styrene	tert-butylbenzene	Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Diethylphthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Сусіонекапе
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	mg/L
PQL	0.005	0.005		0.005		0.1	0.05	1	1	1	1	1	1	1	1	1	50	10	10	10	50	10	0.001
NEPM 1999 GW HSL D for Vapour Intrusion - Commercial/Industrial (Sand, 2- 4mBGL)																							
ANZECC 2000 Aquatic Ecosystems - Marine Ecosystems (95%)	0.91																						
NHMRC 2008 Recreation Health		500		30											30								
NHMRC 2008 Recreation Aesthetic	0.5														4								
ANZECC 2000 Primary Industries, Aquaculture and human consumption - saltwater production			100		0.1																		
ANZECC 2000 Primary Industries - Livestock Drinking Water			1500		30																		

Groundwater Grab Sample																								_
GW1	12/10/2016	0.16	0.79	3.4997	0.045	0.1481	42	0.1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<10	<10	<10	<50	<10	<0.00
GW1 (Silica Gel Cleanup)	12/10/2010		741	-	2.5		100	Ç.,	2	-	100		27			100	141	4	- Tal	12	12	2	- E	-
Liquid Waste - Disused Septic																								
GW2	13/10/2016	480	<0.005	, S	0.024	0.079	740	23	- 2			. ¥.	- 2	20			-	1.	52	W .	S2 .	- 2	- 22	- 2
GW2 (Silica Gel Cleanup)	13/10/2016		-	, Q	20			- 1	- S	1	- 5	2		. 20		123	145		S4.	15	100	· %	- 8	- 1

Appendix J

Soil Borehole Logs

Sampling Location ID:BH1

LBW environmental projects

Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Date Commenced: 13.10.2016 Date Completed: 13.10.2016

_	_			Sub	surface Lithology			Sam	pling C	etails
,	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comment:
		0.0	×		Ground Surface REWORKED NATURAL Clayey SAND: Fine to coarse grained, grey-brown, with organics.	м		BH1-1 BH1-3		Du plicate: BH1-2
		0.5			Sandy Silty CLAY High plasticity, orange-brown, fine to coarse sand, with calcareous gravels.					
		1.0			Calcareous Silty Sandy CLAY High plasticity, grey-brown, with fine to coarse sand and fine to medium calcareous gravels.	М		BH1-4		
		1.5			Silty Calcareous CLAY High plasticity, light grey-brown, with fine to medium gravels.	м				
20		2.0								
Push lube		2.5			Sandy CLAY High plasticity, mottled orange- brown, fine to coarse sand, with fine to medium gravels.	М				
		3.0-			Silty CLAY High plasticity, pale brown, with fine to coarse sand lenses.	М				
		3.5								
		4.0								
		4.5	7 - 7		Sandy CLAY High plasticity, pale orange-brown, fine to coarse sand. SANDSTONE	М				
		5.0	. 1		Refuset					

Sampling Location ID:BH2

LBW environmental projects

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 13.10.2016 **Date Completed:** 13.10.2016

Т				Sub	surface Lithology			Sam	pling L	Petails
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			Soil Surface REWORKED NATURAL Clayey SAND: Fine to coarse grained, grey-brown, with organics. Sandy Silty CLAY	М		вн2-1 ВН2-2 ВН2-3		
		0.5			High plasticity, orange-brown, with fine to coarse sand. Calcareous Silty Sandy CLAY High plasticity, grey-brown, with fine			BHZ-3		
		1.0			to coarse sand. Calcareous Silty CLAY High plasticity, light grey-brown, with fine to medium gravels.			BH2-4		
		1.5			Sandy CLAY High plasticity, grey-brown, fine to	М				
		2.0-			coarse sand, with fine to medium sandstone gravels.					
Push Tube		2.5-								
		3.0-			Clayey SAND Fine to coarse grained, light grange-	М				
		3.5-			brown, low plasticity fines, with fine to medium gravels.					
		4.0								
		4.5-			Sandy CLAY High plasticity, pale orange*brown, fine to coarse sand, with fine to medium gravets.	SM				
		5.0-	111112		End of Hole					

Sampling Location ID:BH3

LBW projects environmental

Site Location: Smith Bay, Kangaroo Island Project: Preliminary Site Investigation

Client: KIPT Job No.: 150738-01 Date Commenced: 13.10.2016 Date Completed: 13.10.2016 Logged By: BAF

Checked By: JP

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Phone: 08 8331 2417 Fax: 08 8331 2415 Sampling Details Subsurface Lithology **Drilling Method** PID (ppm) Depth (m) Description Sample ID **Additional Comments** Moisture Graphic Water Ground Surface 0.0 M REWORKED NATURAL BH3-1 Clayey SAND: Fine to coarse grained, grey-brown, with organics. 0.5 M Calcareous Silty CLAY BH3-2 Low to medium plasticity, light orange-brown. 1.0-BH3-3 1.5 M **Calcareous Silty CLAY** BH3-4 High plasticity, light grey-brown, with fine to medium gravels. 2.0-Tube 2.5-P. . . Clayey SAND BH3-5 Fine to coarse grained, light orangebrown, with fine to medium gravels. 3.0-3.5-SANDSTONE Light orange-brown. Retusal 4.0-4.5-5.0 Operator: Lachlan Sandland Contractor: In-Depth Drilling Drill Rig: 4WD Page 1 of 1

Sampling Location ID:BH4

LBW environmental projects

Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Date Commenced: 13.10.2016 Date Completed: 13.10.2016

Subsurface Lithology							Sampling Details				
Water	Depth (m)	Grapnic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments		
	0.0	***		Ground Surface REWORKED NATURAL Gravelly SAND: Fine to coarse grained, orange-brown, with fine to medium gravels. REWORKED NATURAL	м		BH4-1 BH4-2				
	0.5			Silty Sandy CLAY: Medium plesticity, pale brown, with fine to coarse sand and fine to medium gravels. Sandy Silty CLAY	М		BH4-3 BH4-4		Trace organic/fish odour.		
	1.0			High plasticity, dark brown, with fine to coerse sand and fine to medium gravets.			masd (85)				
	1.5			Calcareous Clayey SILT Light orange-brown, with fine to medium gravels and fine to coarse sand.							
	2.0			Calcareous Sandy Clayey SILT Low plasticity, fine to coarse sand, with fine to medium gravels.	D						
eg	2.5-										
	3.0-										
	3.5-										
	4.0			CANDSTONE							
	4.5			SANDSTONE Pale brown. Refusal	1						

Sampling Location ID:BH5

LBW environmental projects

Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Date Commenced: 13.10.2016 Date Completed: 13.10.2016

_			Sub	surface Lithology		Sampling Details			
Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
	0.0-	X		Ground Surface REWORKED NATURAL Silty CLAY: High plasticity, orange- brown mottled. Silty CLAY High plasticity, dark brown with	M M		BH5-1 BH5-2 BH5-3		
	1.0		Silty CLAY High plasticity, red-brown. Silty Sandy CLAY Me dium plasticity, light-brown, calcareous, with fine to coarse sand.	м		BH5-4			
	1.5			Sandy CLAY	SM				
9000	2.5-			Medium to high plasticity, pale grey with orange mottling, fine to coarse sand, with fine to medium gravels.					
				D					
	3.5— - - - 4.0—			Clayey SAND Fine to coarse grained, light grey, low plasticity fines.	s Time!				
	4.5	2.7		SILTSTONE GRAVEL Fine to coarse grained, light grey.					

Sampling Location ID:BH6

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 13.10.2016

Date Completed: 13.10.2016

Logged By: BAF

Checked By: JP

Sampling Details			Subsurface Lithology			
Sample ID (E Additional Comments	Recovery	Moisture	Description	Graphic	Water Depth (m)	
BH6-1		М	Soil Surface REWORKED NATURAL Sitty CLAY: High plasticity, crange-	°	0.0	
BH6-2		М	brown mottled. Silty CLAY High plasticity, dark brown with		421 A31	
ВН6-3		М	Inclusions. Calcareous Silty Sandy CLAY	5	0.5	
BH6-4			Medium plasticity, light-brown, fine to coarse send.	0-1	1.0	
				5	1.5	
				0-	2.0	
		м	Silty CLAY Low plasticity, pale grey-brown, with fine to medium sandstone gravels and trace fine to coarse sand.	5-	2.5	Push Tube
				0	3.0	
			Silty CLAY High plasticity, pale grey with crange mottling, with fine to coarse sand lenses.	5-	3.5	
				0-	4.0	
			CLAY High plasticity, red-brown mottled, with silt.	5-	4.5	
			SANDSTONE GRAVELS Fine to medium grained, red-brown mottled.	0 -	5.0	
Drill Rig: 4WD			SANDSTONE GRAVELS Fine to medium grained, red-brown		3	

Sampling Location ID:BH7

LBW environmental projects

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 13.10.2016 **Date Completed:** 13.10.2016

Т	Subsurface Lithology							Sampling Details				
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments		
		0.0-	***		Soil Surface REWORKED NATURAL Silty Sandy CLAY: High plasticity,	м		BH7-1				
		0.5			orange-brown mottled, with fine to coarse sand and fine to medium gravels. Sandy Silty CLAY	SM		BH7-2				
		-			Medium to high plasticity, dark brown, with fine to coarse sand.	м						
		1.0			Sandy CLAY High plasticity, red-brown mottled, with fine to coarse sand.	3223		BH7-3				
		-			Silty CLAY Medium plasticity, light grey with red mottling, with sendstone lenses.							
		1.5			Calcarague Silby Sandy CLAV							
		2.0-			Calcareous Silty Sandy CLAY Me du m pla sticity, light grey, with fine to coarse sand.							
Push Tube		2.5										
		3.0-			CLAY High plesticity, grey-brown, with							
		3.5										
		4.0			Sandy CLAY Medium plasticity, orange-brown, fine to coarse sand, with silt lenses.							
		4.5										
		5.0-	/////		End of Hole							

Sampling Location ID:BH8

LBW environmental projects

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Phone: 08 8331 2417 Fex: 08 8331 2415 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 13.10.2016 **Date Completed:** 13.10.2016

Т	Т			Sub	surface Lithology	Т	Sampling Details				
nonna di mini	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments	
		0.0-	×		Ground Surface REWORKED NATURAL Sandy CLAY: Medium plasticity, grey-brown, with fine to coarse sand and trace organics.	SM		BH8-1		Du plicato: BH8-2	
		0.5	$\stackrel{\times}{}$		Clayey SAND Fine to coarse grained, light grey, with less than plastic limit fines.	М		BH8-3			
		1.0			Sandy Silty CLAY High plasticity, red-brown mottled, with fine to coarse sand.	SM		BH8-4			
		1.5			Calcareous Silty Sandy CLAY Medium plasticity, light grey, with fine to coarse sand.	М		BH8-5			
		2.0-						BH8-6			
eg n - us n -		2.5									
		3.0-			Silty Sandy CLAY High plasticity, light grey, fine to coarse sand.			BH8-7			
		3.5			CLAY High plasticity, grey-brown, with						
		4.0			trace fine to coarse sand.						
		4.5			Sandy CLAY Medium plesticity, orange-brown, fine- to coarse sand, with slit lenses.						
		5.0	2.7		SILTSTONE GRAVEL Fine to medium grained, light gray. Refusel						
		tor: In-E	Donth ?	Drilling	Operator: Lachlan Sandland		ш	Drill Rig: 4WD		Page 1 of 1	

Sampling Location ID:BH9

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 13.10.2016 **Date Completed:** 13.10.2016

(t					1 1	
Water Depth (m) Graphic USCS	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
0.0 -	Soil Surface Silty CLAY Medium plasticity, dark brown, with organics. Silty CLAY High plasticity, orange-brown with oream mottling. Calcareous Silty CLAY Medium plasticity, light grey, with fine sand. GRAVEL Weathered sandstone with demented clay lenses, light grey with orange mottling. GRAVEL Weathered sandstone, fine to coarse grained, light grey. Cemented SAND Fine to coarse grained, pale orange-brown, with fine to coarse sandstone gravels. SAND Fine to coarse grained, light orange-brown, with sandstone lenses.	M SM M		BH9-1 BH9-2 BH9-3 BH9-4	a	

Sampling Location ID:BH10

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069

Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT Job No.: 150738-01 Date Commenced: 12.10.2016 Date Completed: 12.10.2016 Logged By: BAF

Checked By: JP

Subsurface Lithology Sampling Details **Drilling Method** PID (ppm) Depth (m) Description Sample ID **Additional Comments** Moisture Graphic Soil Surface 0.0 M REWORKED NATURAL BH10-1 Silty CLAY: Medium to high plasticity, light orange-brown, with BH10-2 fine gravels. **Calcareous Silty CLAY** 0.5 Medium plasticity, light grey, with fine to coarse sand. BH10-5 1.0 D GRAVEL BH10-3 Weathered sandstone with cemented clay lenses, light grey with orange mottling. 1.5 2.0-Tube 2.5 BH10-4 P. . . Sandy CLAY High plasticity, pale grey-brown, with 3.0fine to coarse sand. 3.5 D SAND Weathered with sandstone lenses, fine to coarse, light orange-brown. 4.0-4.5 5.0 End of Hole Operator: Lachlan Sandland Contractor: In-Depth Drilling Drill Rig: 4WD Page 1 of 1

Sampling Location ID:BH11

LBW environmental projects

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Phone: 08 8331 2417 Fex: 08 8331 2415 Site Location: Smith Bay, Kangaroo Island

Project: Proliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 12.10.2016 **Date Completed:** 12.10.2016

Т	Г		Sub	surface Lithology	Т	Sampling Details					
Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments		
	0.0-			Ground Surface Silty CLAY Me dium pla sticity, dark brown, with	м		BH11-1	0			
	0.5			fine organics. Silty CLAY Medium plasticity, pale orange- brown, highly calcareous, with fine to	М		BH11-2	0			
				medium sandstone gravels.			BH11-3	0			
	1.0-										
	1.5						BH11-4	0			
	2.0-			Silty CLAY Medium plasticity, pale orange- brown, with fine to coarse sand lenses and fine to medium sandstone gravels.							
Post Le ba	2.5-	5									
	3.0-										
	3.5-										
	4.0-	17.7.2.7		SANDSTONE Light grey with red-orange mottling.							
	4.5-	2.7.4		Rerusas							
	5.0										

Sampling Location ID:BH12

LBW environmental projects

Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

184 Magill Road Norwood SA 5067
PO Box 225 Stepney SA 5069
Phone: 08 8331 2417 Fex: 08 8331 2415

Client: KIPT

Job No.: 150738-01

Date Commenced: 12.10.2016

Date Completed: 12.10.2016

Logged By: BAF

Checked By: JP

Т	Т	T	s	ubsurface Lithology		\vdash	Sar	npling D	etails
Water	Depth (m)	riducas	diapilic	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
T	0.	0-		Ground Surface Silty CLAY	м		BH12-1		
				Medium plasticity, dark brown, with	М		BH12-2		
	0.			Silty CLAY High plasticity, pale orange-red-	м				
	0.	³ <u>//</u>		Silty CLAY	-1"		BH12-3		
		-		Medium plasticity, pale orange- brown, with fine to coarse sand					
	1.	·		lenses and fine to medium sandstogravels.	one.				
		1					BH12-4		
		1		Calcareous Silty Sandy CLAY					
	1.	5-		coarse sand.					
		1							
	2.			CLAV					
		1		CLAY High plasticity, green-grey mottled trace fine to coarse sand.	d,				
9		1		trace fine to coarse sand.					
4 2 2 B	2.	5-							
3									
	3.								
	3.			CLAY High plasticity, grey-brown mottle	d,				
				with trace fine to coarse sand.					
	3.	5-							
		7							
		1							
	4.	٥٦:		SANDSTONE Light grey with red-orange mottling	.				
		1	`						
	4.	5	_						
		1		Refusal					
		=							
	5.	0-							
		-	\perp						

Sampling Location ID:BH13

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Commenced: 11.10.2016 **Date Completed:** 11.10.2016

				Sub	surface Lithology			Sam	pling C	Petails
Drilling Method	Water	Depth (m)	Graphic	sosn	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			Soil Surface SAND Fine to coarse grained, light brown.	M		BH13-1	0	Du piicate: BH13-2
Push Tube		1.0						BH13-4	0.1	Some black organics present at 0.9 to 0.95 mBGL
		1.5-				w		BH13-5	0	
		- - -			End of Hote	_		ВН13-6	0.3	Rock, cobbles.
		2.5	D- "	D	Operator: Lachlan Sandland	<u> </u>	<u> </u>	Drill Rig: 4WD		Page 1 of 1

Sampling Location ID:BH14

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 10.10.2016 **Date Completed:** 10.10.2016

		1	ı	Sub	surface Lithology			Sam	pling C	Petails
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			Soil Surface Sandy SILT Dark brown, fine to coarse sand, with organics (roots, grass) and trace fine to medium gravels.	М		BH14-1	0	
Push Tube		0.5						BH14-2	0.1	Fine roots to 0.6 mBGL.
					Sandy CLAY Me diu m plasticity, dark brown.	М		BH14-3	0.2	
		- - cctor: In	Paralle I		End of Hole Operator: LachlanSandland			Drill Rig: 4WD		Page 1 of 1

Sampling Location ID:BH15

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Commenced: 11.10.2016 **Date Completed:** 11.10.2016

Logged By: BAF
Checked By: BF

Subsurface Lithology **Sampling Details Drilling Method** PID (ppm) Depth (m) Description Sample ID **Additional Comments** Moisture Graphic 0.0 Sandy SILT Dark brown, fine to coarse sand, with organics (roots) and trace fine 0 BH15-1 M Sandy CLAY Tube Me diu m pla sticity, dark brown, with fine to coarse sand and trace fine Pu sh BH15-2 0 BH15-3 1.0-End of Hole Operator: Lachlan Sandland Page 1 of 1 Contractor: In-Depth Drilling Drill Rig: 4WD

Sampling Location ID:BH16

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Commenced: 11.10.2016 **Date Completed:** 11.10.2016

				Sub	surface Lithology			Sam	pling C	Petails
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			Soil Surface Silty SAND Fine to coarse grained, dark brown, with less than plastic limit fines.	М		BH16-1		
Push Tube		0.5			Trace fine gravels.	M/W		BH16-2		
		-			Cobbies/rock.			BH16-3		
		-			End of Hole					

Sampling Location ID:BH17

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 11.10.2016 **Date Completed:** 11.10.2016

		ı		Sul	osurface Lithology	1		Sam	pling C	Petails
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			Soil Surface Sandy SILT Brown, fine to coarse sand, with organics (roots).	М		ВН17-1		
		-			Sandy CLAY High plasticity, brown with some red- brown mottling and fine to medium sand.	- М		ВН17-2		
Push Tube		0.5			CLAY High plasticity, brown, trace fine to medium sand.	М		BH17-3		
		1.0-			CLAY Me dium plasticity, brown and light brown, with some fine to medium sand and fine to medium calcareous gravels.	М		BH17-4		
		1.5—			End or Hole			BH17-5		
C	ontra	ctor: In	-Depth I	Drilling	Operator: Lachlan Sandland			Drill Rig: 4WD		Page 1 of 1

Sampling Location ID:BH18

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: S_{mith} B_{ay} , $K_{angaroo}$ I_{sland}

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Commenced: 12.10.2016 **Date Completed:** 12.10.2016

				Sub	psurface Lithology			Sam	pling [Petails
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			Soil Surface Sandy CLAY Medium to high plasticity, brown, with fine to coarse sand, fine to medium roots and trace fine to medium gravels.	М		BH18-1		Du piicate: BH18-5
		_			Silty CLAY	м		BH18-2		
Push Tube		0.5			Low to medium plasticity, pale brown/cream with calcaereous mottling and less than plastic limit fines.			BH18-3		Fine to medium aggregates, friable with finger pressure.
		-						BH18-4		
		1.0-	Daret C		End of Hole Operator: Lachlan Sandland			Drill Rig: 4WD		Page 1 of 1

Sampling Location ID:BH19

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 12.10.2016 **Date Completed:** 12.10.2016

Water	Oepth (m)	Graphic							
	0.0-	0	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
	-			Soil Surface Sandy CLAY Me dium plasticity, brown, with fine to medium sand and some organics (fine roots).	М		BH19-1		
	0.5			Sandy CLAY Low to medium plasticity, brown, with fine to coarse sand and calcareous gravels.	M		BH19-2		
Fush Tube	-			Gravelly CLAY Low plasticity, pale brown, with fine to	М		DIMO 0		
	- - -			medium calcareous gravels and fine to coarse sand.			BH19-3		
	1.5-			End of Hote			BH19-4		

Sampling Location ID:BH20

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Commenced: 12.10.2016 **Date Completed:** 12.10.2016

		1		Sub	osurface Lithology			Sam	pling D	Details
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
					Soil Surface Silty CLAY Low to medium plasticity, dark brown, with less than plastic limit fines and fine to coarse sand. Sandy CLAY Medium plasticity, brown with some orange-brown/red-brown mottling, fine to coarse sand and trace fine calcareous gravels.	М		BH20-1 BH20-2		
Push Tube		0.5			CLAY High plasticity, green-grey, trace fine to medium sand.	М		BH20-3		
д.		1.0-						BH20-4		
		1.5-			End of Hole					
	ontra	- nctor: In	-Depth [Orilling	Operator: Lachlan Sandland			Drill Rig: 4WD		Page 1 of 1

Sampling Location ID:T1

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Commenced: 13.10.2016 **Date Completed:** 13.10.2016

				Sub	surface Lithology			Sam	pling C	Details
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			REWORKED NATURAL Sandy CLAY: Medium plasticity, brown/grey-brown, with fine to medium sand and fine calcareous gravels.	М		T1-1		Du plicate: T1-2
u be		-			Silty CLAY Low to medium plasticity, pale brown/cream with calcareous mottling, less than plastic limit fines and fine to medium calcareous gravels.	- М		T1-3		Du plicate: T1-4
Push Tube		-			Some calcareous cobbles.			T1-5		
		0.5			End of Hole					
		-								
		1.0-								
Co	ontra	ctor: In	-Depth [Drilling	Operator: Lachlan Sandland		<u> </u>	Drill Rig: 4WD	I	

Sampling Location ID:T2

LBW environmental projects

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: S_{mith} B_{ay} , $K_{angaroo}$ I_{sland}

Project: Preliminary Site Investigation

Client: KIPT

Job No.: 150738-01

Date Commenced: 13.10.2016 **Date Completed:** 13.10.2016

-			1	Sub	osurface Lithology			Samı	oling C	Details
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			Soil Surface REWORKED NATURAL Silty CLAY: Low to medium plasticity, pale brown/cream, with fine to coarse calcareous gravels and trace fine to coarse sand, shells. Sandy CLAY Medium plasticity, brown with pale brown/cream calcareous mottling, fine to coarse sand and fine to coarse calcareous gravels.	М		T2-1 T2-3		Du piicate: T2-2
Hand Auger		0.5-			Some red-brown mottling and sandstone gravels. Silty CLAY Low to medium plasticity, dark brown, with fine to medium sand. Some sandstone.	М		T2-4 T2-5		
		-								
Co	ontra	1.0- ctor: In	i-Depth I	Orilling	Operator: Lachlan Sandland			Drill Rig: HandAuger		Page 1 of 1

Sampling Location ID:T3

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: Smith Bay, Kangaroo Island

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Completed: 13.10.2016 **Date Completed:** 13.10.2016

				Sub	surface Lithology			Sam	pling C	Details
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			Soil Surface Silty Sandy CLAY Low to medium plasticity, dark brown, with fine to coarse sand and some fine to coarse calcareous gravels and organics.	М		T3-1		Duplicate: T3-2
Hand Auger		-			Silty Sandy CLAY Low plasticity, pale brown/cream, with fine to coarse sand and fine to coarse calcareous gravels.	М		ТЗ-З		
		0.5-			End of Hole			T3-4		
		1.0—			Operator: LachlanSandland			Drill Rig: HandAuger		Page 1 of 1

Sampling Location ID:T4

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: S_{mith} B_{ay} , $K_{angaroo}$ I_{sland}

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Commenced: 13.10.2016 **Date Completed:** 13.10.2016

				Sul	osurface Lithology			Sam	pling [Details
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments
		0.0-			REWORKED NATURAL Me dium plasticity, brown/orange-brown/red-brown, with fine to coarse sand, fine to coarse calcareous gravels and trace organics.	D		T 4 - 1		Du piicato: T4-2
		-			Silty Sandy CLAY Low plasticity, pale brown/cream, with fine to coarse sand and fine to medium calcareous gravels.	м		T 4 - 3		
Hand Auger		-			Medium to high plasticity, brown/orange-brown with calcareous mottling, fine to coarse sand and fine to coarse calcareous gravels.			T 4 - 4		
er .		0.5			Calcareous Sandy CLAY Low plasticity, pale brown/green- grey, with fine to coarse sand and fine to coarse calcareous gravels.	М		T 4 - 5		
		-			End of Hole	_				
		-	_							
		-								
Co	ontra	1.0-	-Depth I	Orilling	Operator: LachlanSandland			Drill Rig: HandAuger		Page 1 of 1

Sampling Location ID:T5

LBW environmental projects

184 Magiii Road Norwood SA 5067 PO Box 225 Stepney SA 5069 Site Location: S_{mith} B_{ay} , $K_{angaroo}$ I_{sland}

Project: Preliminary Site Investigation

Client: KIPT **Job No.:** 150738-01

Date Commenced: 13.10.2016 **Date Completed:** 13.10.2016

				Sub	osurface Lithology		Sampling Details					
Drilling Method	Water	Depth (m)	Graphic	nscs	Description	Moisture	Recovery	Sample ID	PID (ppm)	Additional Comments		
		0.0-			Soil Surface REWORKED NATURAL Me dium plasticity, brown/grey-brown, with fine to coarse sand, sandstone and calcareous gravels.	М		T5-1		Du piicate: T5-2		
Hand Auger		_						T5-3				
		-			End of Hole			T 5 - 4				
		0.5										
		_										
		-										
		_										
Co	ontra	1.0-	-Depth [Drilling	Operator: LachlanSandland			Drill Rig: HandAuger		Page 1 of 1		

Appendix K

Laboratory Reports and Chain of Custody Documentation - Soil

email: melbourne@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Melbourne | ABN 37 112 535 645 - 002

CERTIFICATE OF ANALYSIS 9488

Client:

LBW Environmental Projects

184 Magill Road Norwood

SA 5067

Attention: Brad Fitzgerald

Sample log in details:

Your Reference: 150738-01 - Smith Bay Baseline Assessment

No. of samples: 108 Soils, 2 Waters

Date samples received / completed instructions received 18/10/2016 / 18/10/2016

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 26/10/16 / 26/10/16

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

Pamela Adams Laboratory Manager

vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	9488-1 BH1-01 13/10/2016 Soil	9488-5 BH2-01 13/10/2016 Soil	9488-10 BH3-02 13/10/2016 Soil	9488-16 BH4-03 13/10/2016 Soil	9488-18 BH5-01 13/10/2016 Soil
Date extracted	2	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
vTRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
vTRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	106	105	105	102	108

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference DateSampled Type of sample	UNITS	9488-22 BH6-01 13/10/2016 Soil	9488-26 BH7-01 13/10/2016 Soil	9488-29 BH8-01 13/10/2016 Soil	9488-41 BH10-01 12/10/2016 Soil	9488-55 BH13-04 13/10/2016 Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed		24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
vTRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
vTRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	108	103	105	95	104

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	9488-64	9488-67	9488-72	9488-84	9488-85
Your Reference		BH16-01	BH17-01	BH18-01	T1-01	T1-02
Date Sampled		12/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
vTRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
vTRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	94	99	92	94

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	9488-89	9488-97	9488-98	9488-103	9488-107
Your Reference	A TOTAL CONTROL (1940)	T2-01	T3-04	T4-01	T5-01	T6-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
vTRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
vTRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	95	99	102	103

TRHSoil C10-C40 NEPM Our Reference: Your Reference Date Sampled Type of sample	UNITS	9488-1 BH1-01 13/10/2016 Soil	9488-5 BH2-01 13/10/2016 Soil	9488-10 BH3-02 13/10/2016 Soil	9488-16 BH4-03 13/10/2016 Soil	9488-18 BH5-01 13/10/2016 Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed		22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	80	80	80	81	82

TRHSoilC10-C40NEPM						
Our Reference:	UNITS	9488-22	9488-26	9488-29	9488-41	9488-55
Your Reference		BH6-01	BH7-01	BH8-01	BH10-01	BH13-04
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	.	21/10/2016	21/10/2016	22/10/2016	22/10/2016	22/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
Total+ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	86	86	87	83

TRHSoil C10-C40 NEPM Our Reference: Your Reference Date Sampled Type of sample	UNITS	9488-64 BH16-01 12/10/2016 Soil	9488-67 BH17-01 13/10/2016 Soil	9488-72 BH18-01 13/10/2016 Soil	9488-84 T1-01 13/10/2016 Soil	9488-85 T1-02 13/10/2016 Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed		22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	82	81	80	84

TRH Soil C10-C40 NEPM						
Our Reference:	UNITS	9488-89	9488-97	9488-98	9488-103	9488-107
Your Reference		T2-01	T3-04	T4-01	T5-01	T6-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	=	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
Total+ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	78	76	75	79	81

PAHs in Soil						
Our Reference:	UNITS	9488-1	9488-5	9488-10	9488-16	9488-18
Your Reference		BH1-01	BH2-01	BH3-02	BH4-03	BH5-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	5	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	96	94	94	100

PAHs in Soil						
Our Reference:	UNITS	9488-22	9488-26	9488-29	9488-41	9488-55
Your Reference		BH6-01	BH7-01	BH8-01	BH10-01	BH13-04
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	5	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	98	92	96	96

PAHs in Soil						
Our Reference:	UNITS	9488-64	9488-67	9488-72	9488-84	9488-85
Your Reference		BH16-01	BH17-01	BH18-01	T1-01	T1-02
Date Sampled		12/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	96	94	106	92

PAHs in Soil						
Our Reference:	UNITS	9488-89	9488-97	9488-98	9488-103	9488-107
Your Reference		T2-01	T3-04	T4-01	T5-01	T6-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	94	96	102	94

Speciated Phenols in Soil						
Our Reference:	UNITS	9488-16	9488-22	9488-29	9488-67	9488-89
Your Reference		BH4-03	BH6-01	BH8-01	BH17-01	T2-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	5	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Phenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2-Chlorophenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2-Methylphenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
3/4-Methylphenol	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
2-Nitrophenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2,4-Dimethylphenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2,4-Dichlorophenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2,6-Dichlorophenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2,4,5-Trichlorophenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2,4,6-Trichlorophenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2,4-Dinitrophenol	mg/kg	<2	<2	<2	<2	<2
4-Nitrophenol	mg/kg	<4	<4	<4	<4	<4
2,3,4,6-Tetrachlorophenol	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pentachlorophenol	mg/kg	<1	<1	<1	<1	<1
4-Chloro-3-Methylphenol	mg/kg	<2	<2	<2	<2	<2
Total +ve Cresols	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total +ve PhenoIs	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate Phenol-de	%	86	92	90	92	84

OCP in Soil - NEPM						
Our Reference:	UNITS	9488-5	9488-10	9488-14	9488-16	9488-18
Your Reference		BH2-01	BH3-02	BH4-01	BH4-03	BH5-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+vereported DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	[NA]	[NA]	[NA]	<0.5	[NA]
Toxaphene	mg/kg	[NA]	[NA]	[NA]	<2	[NA]
Surrogate TCMX	%	94	96	96	94	100

OCP in Soil - NEPM						
Our Reference:	UNITS	9488-22	9488-29	9488-30	9488-36	9488-41
Your Reference		BH6-01	BH8-01	BH8-02	BH9-01	BH10-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+vereported DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.5	<0.5	[NA]	[NA]	[NA]
Toxaphene	mg/kg	<2	<2	[NA]	[NA]	[NA]
Surrogate TCMX	%	98	94	92	100	94

OCP in Soil - NEPM						
Our Reference:	UNITS	9488-49	9488-67	9488-72	9488-80	9488-84
Your Reference		BH12-01	BH17-01	BH18-01	BH20-01	T1-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+ve reported DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	[NA]	<0.5	[NA]	[NA]	[NA]
Toxaphene	mg/kg	[NA]	<2	[NA]	[NA]	[NA]
Surrogate TCMX	%	96	96	96	94	98

OCP in Soil - NEPM						
Our Reference:	UNITS	9488-85	9488-89	9488-98	9488-103	9488-107
Your Reference		T1-02	T2-01	T4-01	T5-01	T6-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+vereported DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	[NA]	<0.5	[NA]	[NA]	[NA]
Toxaphene	mg/kg	[NA]	<2	[NA]	[NA]	[NA]
Surrogate TCMX	%	90	92	98	100	94

OP in Soil Our Reference:	UNITS	9488-5	9488-10	9488-14	9488-16	9488-18
Your Reference		BH2-01	BH3-02	BH4-01	BH4-03	BH5-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	5	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Chlorpyrifos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorovos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	96	96	94	100

OP in Soil						
Our Reference:	UNITS	9488-22	9488-29	9488-30	9488-36	9488-41
Your Reference)	BH6-01	BH8-01	BH8-02	BH9-01	BH10-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	8	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Chlorpyrifos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Diazinon	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Dichlorovos	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Dimethoate	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Ethion	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Malathion	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Parathion	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Ronnel	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	94	92	100	94

OP in Soil						
Our Reference:	UNITS	9488-49	9488-67	9488-72	9488-80	9488-84
Your Reference		BH12-01	BH17-01	BH18-01	BH20-01	T1-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	=	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Chlorpyrifos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Dichlorovos	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	96	96	94	98

OP in Soil						
Our Reference:	UNITS	9488-85	9488-89	9488-98	9488-103	9488-107
Your Reference) 2002-00-00-00-0	T1-02	T2-01	T4-01	T5-01	T6-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	8	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Chlorpyrifos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Dichlorovos	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Surrogate TCMX	%	90	92	98	100	94

PCBs in Soil						
Our Reference:	UNITS	9488-16	9488-22	9488-29	9488-67	9488-89
Your Reference		BH4-03	BH6-01	BH8-01	BH17-01	T2-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	=	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	94	98	94	96	92

Synthetic Pyrethroids in soil						
Our Reference:	UNITS	9488-16	9488-22	9488-29	9488-67	9488-84
Your Reference		BH4-03	BH6-01	BH8-01	BH17-01	T1-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Bifenthrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cyfluthrin	mg/Kg	[NA]	[NA]	[NA]	[NA]	<2
Cypermethrin	mg/kg	[NA]	[NA]	[NA]	[NA]	<2
Deltamethrin	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.5
Esfenvalerate	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.5
□-Cyhalothrin	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.5
cis-Permethrin	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.5
trans-Permethrin	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.5

Synthetic Pyrethroids in soil	3777222	120001010000	17186012786V40101	TOTAL POST STATE
Our Reference:	UNITS	9488-85	9488-89	9488-98
Your Reference	(T1-02	T2-01	T4-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil
Date extracted	<u> </u>	20/10/2016	20/10/2016	20/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016
Bifenthrin	mg/kg	<0.5	<0.5	<0.5
Cyfluthrin	mg/Kg	<2	[NA]	<2
Cypermethrin	mg/kg	<2	[NA]	<2
Deltamethrin	mg/kg	<0.5	[NA]	<0.5
Esfenvalerate	mg/kg	<0.5	[NA]	<0.5
□-Cyhalothrin	mg/kg	<0.5	[NA]	<0.5
cis-Permethrin	mg/kg	<0.5	[NA]	<0.5
trans-Permethrin	mg/kg	<0.5	[NA]	<0.5

Triazine Herbicides in Soil						
Our Reference:	UNITS	9488-16	9488-22	9488-29	9488-67	9488-89
Your Reference		BH4-03	BH6-01	BH8-01	BH17-01	T2-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	2	20/10/2016	20/10/2016	20/10/2016	20/10/2016	20/10/2016
Date analysed	5	22/10/2016	22/10/2016	22/10/2016	22/10/2016	22/10/2016
Atrazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Phenoxy Acid Herbicides in Soil						
Our Reference:	UNITS	9488-1	9488-14	9488-16	9488-22	9488-29
Your Reference		BH1-01	BH4-01	BH4-03	BH6-01	BH8-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Extracted	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Date analysed		25/10/2016	25/10/2016	25/10/2016	25/10/2016	25/10/2016
Clopyralid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
o-Chlorophenoxy acetic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-CPA	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dicamba	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Mecoprop	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
MCPA	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloroprop	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoxynil	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Triclopyr	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-TP (Silvex)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
MCPB	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-DB	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dinoseb	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
loxynil	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Picloram	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
DCPA(Chlorthal)Diacid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acifluorfen	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
2,4,6-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate: 2,4-DCPA	%	88	81	83	75	86

Phenoxy Acid Herbicides in Soil						
Our Reference:	UNITS	9488-36	9488-49	9488-67	9488-76	9488-80
Your Reference		BH9-01	BH12-01	BH17-01	BH19-01	BH20-01
Date Sampled		12/10/2016	13/10/2016	13/10/2016	13/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Extracted	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Date analysed	-	25/10/2016	25/10/2016	25/10/2016	25/10/2016	25/10/2016
Clopyralid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
o-Chlorophenoxy acetic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-CPA	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dicamba	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Mecoprop	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
MCPA	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloroprop	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoxynil	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Triclopyr	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-TP (Silvex)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
MCPB	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-DB	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dinoseb	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
loxynil	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Picloram	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
DCPA (Chlorthal) Diacid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acifluorfen	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
2,4,6-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate: 2,4-DCPA	%	82	88	90	81	88

Phenoxy Acid Herbicides in Soil Our Reference:	UNITS	9488-89
Your Reference	3	T2-01
Date Sampled Type of sample		13/10/2016 Soil
Type of sample		
Date Extracted	-	24/10/2016
Date analysed	5	25/10/2016
Clopyralid	mg/kg	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5
o-Chlorophenoxy acetic acid	mg/kg	<0.5
4-CPA	mg/kg	<0.5
Dicamba	mg/kg	<0.5
Mecoprop	mg/kg	<0.5
MCPA	mg/kg	<0.5
Dichloroprop	mg/kg	<0.5
2,4-D	mg/kg	<0.5
Bromoxynil	mg/kg	<0.5
Triclopyr	mg/kg	<0.5
2,4,5-TP (Silvex)	mg/kg	<0.5
2,4,5-T	mg/kg	<0.5
MCPB	mg/kg	<0.5
2.4-DB	mg/kg	<0.5
Dinoseb	mg/kg	<1.0
loxynil	mg/kg	<1.0
Picloram	mg/kg	<0.5
DCPA (Chlorthal) Diacid	mg/kg	<0.5
Acifluorfen	mg/kg	<2.0
2,4,6-T	mg/kg	<0.5
2,6-D	mg/kg	<0.5
Surrogate: 2,4-DCPA	%	84

NEPM screen metals in soil						
Our Reference:	UNITS	9488-1	9488-5	9488-10	9488-14	9488-16
Your Reference		BH1-01	BH2-01	BH3-02	BH4-01	BH4-03
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/201
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/201
Arsenic	mg/kg	<4	<4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	19	5	41	17
Copper	mg/kg	2	5	3	<1	3
Lead	mg/kg	4	6	1	14	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	5	5	3	4
Zinc	mg/kg	3	8	4	3	6
Selenium	mg/kg	<2	<2	<2	<2	<2
Beryllium	mg/kg	[NA]	[NA]	[NA]	[NA]	<1
Boron	mg/kg	[NA]	[NA]	[NA]	[NA]	8
Cobalt	mg/kg	[NA]	[NA]	[NA]	[NA]	2
Manganese	mg/kg	[NA]	[NA]	[NA]	[NA]	110
Phosphorus	mg/kg	110	[NA]	[NA]	30	230
Silver	mg/kg	<1	<1	<1	<1	[NA]
Tin	mg/kg	<1	<1	<1	<1	[NA]
Molybdenum	mg/kg	<1	<1	<1	<1	[NA]

NEPM screen metals in soil						
Our Reference:	UNITS	9488-18	9488-22	9488-26	9488-29	9488-30
Your Reference		BH5-01	BH6-01	BH7-01	BH8-01	BH8-02
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	30	14	21	9	9
Copper	mg/kg	2	2	2	3	3
Lead	mg/kg	8	4	7	4	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	4	5	2	2
Zinc	mg/kg	8	5	5	8	28
Selenium	mg/kg	<2	<2	<2	<2	<2
Beryllium	mg/kg	[NA]	<1	[NA]	<1	[NA]
Boron	mg/kg	[NA]	9	[NA]	5	[NA]
Cobalt	mg/kg	[NA]	4	[NA]	1	[NA]
Manganese	mg/kg	[NA]	86	[NA]	41	[NA]
Phosphorus	mg/kg	140	200	[NA]	160	160
Silver	mg/kg	<1	[NA]	<1	[NA]	<1
Tin	mg/kg	<1	[NA]	<1	[NA]	<1
Molybdenum	mg/kg	<1	[NA]	<1	[NA]	<1

NEPM screen metals in soil						
Our Reference:	UNITS	9488-36	9488-38	9488-41	9488-45	9488-47
Your Reference		BH9-01	BH9-03	BH10-01	BH11-01	BH11-03
Date Sampled		12/10/2016	12/10/2016	12/10/2016	13/10/2016	13/10/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/201
Date analysed	5	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/201
Arsenic	mg/kg	<4	6	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	9	16	15	4
Copper	mg/kg	2	<1	2	3	<1
Lead	mg/kg	3	4	5	5	1
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	3	5	4	4
Zinc	mg/kg	4	3	5	6	2
Selenium	mg/kg	<2	<2	<2	<2	<2
Iron	mg/kg	[NA]	[NA]	[NA]	[NA]	2,300
Phosphorus	mg/kg	160	[NA]	[NA]	[NA]	[NA]
Silver	mg/kg	<1	<1	<1	<1	<1
Tin	mg/kg	<1	<1	<1	<1	<1
Molybdenum	mg/kg	<1	<1	<1	<1	<1

NEPM screen metals in soil						
Our Reference:	UNITS	9488-49	9488-53	9488-58	9488-61	9488-64
Your Reference		BH12-01	BH13-01	BH14-01	BH15-01	BH16-01
Date Sampled		13/10/2016	13/10/2016	12/10/2016	12/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Arsenic	mg/kg	<4	<4	<4	4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	6	13	14	9
Copper	mg/kg	2	<1	6	5	2
Lead	mg/kg	4	1	5	6	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	2	4	5	4
Zinc	mg/kg	5	4	12	8	4
Selenium	mg/kg	<2	<2	<2	<2	<2
Phosphorus	mg/kg	210	[NA]	[NA]	280	[NA]
Silver	mg/kg	<1	<1	<1	<1	<1
Tin	mg/kg	<1	<1	<1	<1	<1
Molybdenum	mg/kg	<1	<1	<1	<1	<1

NEPM screen metals in soil						
Our Reference:	UNITS	9488-67	9488-72	9488-76	9488-80	9488-83
Your Reference		BH17-01	BH18-01	BH19-01	BH20-01	BH20-04
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	12	18	10	27
Copper	mg/kg	3	2	3	2	1
Lead	mg/kg	6	4	7	5	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	3	4	2	4
Zinc	mg/kg	6	6	7	6	8
Selenium	mg/kg	<2	<2	<2	<2	<2
Beryllium	mg/kg	<1	[NA]	[NA]	[NA]	[NA]
Boron	mg/kg	8	[NA]	[NA]	[NA]	[NA]
Cobalt	mg/kg	2	[NA]	[NA]	[NA]	[NA]
Manganese	mg/kg	77	[NA]	[NA]	[NA]	[NA]
Iron	mg/kg	[NA]	[NA]	[NA]	[NA]	20,000
Phosphorus	mg/kg	110	170	300	[NA]	[NA]
Silver	mg/kg	[NA]	<1	<1	<1	<1
Tin	mg/kg	[NA]	<1	<1	<1	<1
Molybdenum	mg/kg	[NA]	<1	<1	<1	<1

NEPM screen metals in soil						
Our Reference:	UNITS	9488-84	9488-85	9488-89	9488-97	9488-98
Your Reference		T1-01	T1-02	T2-01	T3-04	T4-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed		24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	18	12	10	23
Copper	mg/kg	14	12	2	2	3
Lead	mg/kg	5	5	5	2	7
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	10	3	6	7
Zinc	mg/kg	200	190	6	3	18
Selenium	mg/kg	<2	<2	<2	<2	<2
Beryllium	mg/kg	[NA]	[NA]	<1	[NA]	[NA]
Boron	mg/kg	[NA]	[NA]	31	[NA]	[NA]
Cobalt	mg/kg	[NA]	[NA]	4	[NA]	[NA]
Manganese	mg/kg	[NA]	[NA]	32	[NA]	[NA]
Phosphorus	mg/kg	[NA]	[NA]	26	71	[NA]
Silver	mg/kg	<1	<1	[NA]	<1	<1
Tin	mg/kg	1	<1	[NA]	<1	<1
Molybdenum	mg/kg	<1	<1	[NA]	<1	<1

NEPM screen metals in soil			
Our Reference:	UNITS	9488-103	9488-107
Your Reference		T5-01	T6-01
Date Sampled		13/10/2016	13/10/2016
Type of sample		Soil	Soil
Date digested	-	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	17	16
Copper	mg/kg	1	3
Lead	mg/kg	6	5
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	4	5
Zinc	mg/kg	5	6
Selenium	mg/kg	<2	<2
Phosphorus	mg/kg	[NA]	56
Silver	mg/kg	<1	<1
Tin	mg/kg	<1	<1
Molybdenum	mg/kg	<1	<1

Misc Inorg - soil NEPM Our Reference:	UNITS	9488-1	9488-5	9488-10	9488-14	9488-16
Your Reference		BH1-01	BH2-01	BH3-02	BH4-01	BH4-03
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Free Cyanide in soil	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.5
Hexavalent Chromium, Cr6+	mg/kg	[NA]	[NA]	[NA]	[NA]	<1
pH 1:5 soil:water	pH Units	[NA]	7.5	9.1	8.2	8.8
Nitrate as N in soil	mg/kg	2.1	[NA]	[NA]	<0.5	<0.5
Nitrite as N in soil	mg/kg	<0.1	[NA]	[NA]	<0.1	0.3
Ammonia as N in soil	mg/kg	2.4	[NA]	[NA]	2.0	7.1
Sulphate, SO4	mg/kg	[NA]	[NA]	[NA]	[NA]	68
Chloride, CI	mg/kg	[NA]	[NA]	[NA]	[NA]	170
THE SE SECTION OF						
Misc Inorg - soil NEPM						
Our Reference:	UNITS	9488-18	9488-22	9488-29	9488-30	9488-36
Your Reference Date Sampled		BH5-01 13/10/2016	BH6-01 13/10/2016	BH8-01 13/10/2016	BH8-02 13/10/2016	BH9-01 12/10/201
Type of sample		Soil	Soil	Soil	Soil	Soil
			FOCK.	(AFAFETA	15-2/1	59-10
Date prepared		24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Free Cyanide in soil	mg/kg	[NA]	<0.5	<0.5	[NA]	[NA]
Hexavalent Chromium, Cr ⁶⁺	mg/kg	[NA]	<1	<1	[NA]	[NA]
pH 1:5 soil:water	pH Units	7.4	7.7	6.9	6.7	6.6
Nitrate as N in soil	mg/kg	0.5	<0.5	13	16	1
Nitrite as N in soil	mg/kg	0.5	2.7	<0.1	<0.1	<0.1
Ammonia as N in soil	mg/kg	1.5	4.9	150	110	1.5
Misc Inorg - soil NEPM						
Our Reference:	UNITS	9488-38	9488-41	9488-45	9488-47	9488-49
Your Reference		BH9-03	BH10-01	BH11-01	BH11-03	BH12-01
Date Sampled		12/10/2016	12/10/2016	13/10/2016	13/10/2016	13/10/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	5	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Date analysed	¥	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2010
pH 1:5 soil:water	pH Units	8.7	[NA]	8.1	[NA]	[NA]
pH 1:5 soil:CaCl2	pH Units	[NA]	[NA]	[NA]	8.0	[NA]
Clay in soils <2um	% (w/w)	[NA]	[NA]	[NA]	25	[NA]
otal Organic Carbon (Walkley Black)	mg/kg	[NA]	[NA]	[NA]	12,000	[NA]
Nitrate as N in soil	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.5
Nitrite as N in soil	mg/kg	[NA]	[NA]	[NA]	[NA]	0.1
Ammonia as N in soil	mg/kg	[NA]	[NA]	[NA]	[NA]	2.3
Sulphate, SO4	mg/kg	<10	<10	[NA]	110	[NA]
500 C. A. C.		50870	20,950	NO.27535	0.000	Accessed 1

Chloride, Cl

<10

[NA]

450

<10

mg/kg

[NA]

Misc Inorg - soil NEPM						
Our Reference:	UNITS	9488-53	9488-55	9488-58	9488-61	9488-64
Your Reference		BH13-01	BH13-04	BH14-01	BH15-01	BH16-01
Date Sampled		13/10/2016	13/10/2016	12/10/2016	12/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
pH 1:5 soil:water	pH Units	9.0	[NA]	8.0	7.4	8.7
Nitrate as N in soil	mg/kg	[NA]	[NA]	[NA]	<0.5	[NA]
Nitrite as N in soil	mg/kg	[NA]	[NA]	[NA]	<0.1	[NA]
Ammonia as N in soil	mg/kg	[NA]	[NA]	[NA]	3.5	[NA]
Sulphate, SO4	mg/kg	[NA]	<10	[NA]	[NA]	[NA]
Chloride, Cl	mg/kg	[NA]	<10	[NA]	[NA]	[NA]

Misc Inorg - soil NEPM						
Our Reference:	UNITS	9488-67	9488-72	9488-76	9488-80	9488-83
Your Reference	·	BH17-01	BH18-01	BH19-01	BH20-01	BH20-04
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Free Cyanide in soil	mg/kg	<0.5	[NA]	[NA]	[NA]	[NA]
Hexavalent Chromium, Cr6+	mg/kg	<1	[NA]	[NA]	[NA]	[NA]
pH 1:5 soil:water	pH Units	[NA]	[NA]	[NA]	6.9	[NA]
pH 1:5 soil:CaCl2	pH Units	[NA]	[NA]	[NA]	[NA]	8.1
Clay in soils <2um	% (w/w)	[NA]	[NA]	[NA]	[NA]	61
Total Organic Carbon (Walkley Black)	mg/kg	[NA]	[NA]	[NA]	[NA]	<1,000
Nitrate as N in soil	mg/kg	<0.5	<0.5	15	[NA]	[NA]
Nitrite as N in soil	mg/kg	0.8	0.1	6.0	[NA]	[NA]
Ammonia as N in soil	mg/kg	2.0	1.5	3.6	[NA]	[NA]
Sulphate, SO4	mg/kg	[NA]	330	[NA]	[NA]	[NA]
Chloride, Cl	mg/kg	[NA]	28	[NA]	[NA]	[NA]

Misc Inorg - soil NEPM				
Our Reference:	UNITS	9488-89	9488-97	9488-107
Your Reference		T2-01	T3-04	T6-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil
Date prepared	-	24/10/2016	24/10/2016	24/10/2016
Date analysed	5	24/10/2016	24/10/2016	24/10/2016
Free Cyanide in soil	mg/kg	<0.5	[NA]	[NA]
Hexavalent Chromium, Cr6+	mg/kg	<1	[NA]	[NA]
Nitrate as N in soil	mg/kg	7.7	<0.5	0.8
Nitrite as N in soil	mg/kg	<0.1	<0.1	<0.1
Ammonia as N in soil	mg/kg	<0.5	<0.5	2.1

Cation exchange capacity			
Our Reference:	UNITS	9488-47	9488-83
Your Reference		BH11-03	BH20-04
Date Sampled		13/10/2016	12/10/2016
Type of sample		Soil	Soil
Exchangeable Ca	meq/100g	31	29
Exchangeable K	meq/100g	0.6	2.1
Exchangeable Mg	meq/100g	7.8	9.3
Exchangeable Na	meq/100g	1.1	6.6
Cation Exchange Capacity	meq/100g	40	47

sPOCAS		1
Our Reference:	UNITS	9488-56
Your Reference		BH13-05
Date Sampled		13/10/2016
Type of sample		Soil
Date prepared	-	19/10/2016
Date analysed		25/10/2016
pH kal	pH units	9.8
TAA	moles H ⁺ /t	<5
pH ox	pH units	8.0
TPA	moles H ⁺ /t	<5
Skci	%w/w S	0.02
Саксі	%w/w	0.21
Мдксі	%w/w	0.034
SP	%w/w	0.05
Сар	%w/w	7.5
MgP	%w/w	0.30
a-ANCE	moles H+/t	4,100
Shci	%w/w S	<0.005
TSA	moles H ⁺ /t	<5
s-TAA	%w/w S	<0.01
s-TPA	%w/w S	<0.01
s-TSA	%w/w S	<0.01
Spos	%w/w	0.03
a-Spos	moles H ⁺ /t	18
Сад	%w/w	7.3
а-Сал	moles H ⁺ /t	3,600
s-Ca _A	%w/w S	5.8
Mga	%w/w	0.27
a-MgA	moles H ⁺ /t	220
s-MgA	%w/w S	0.36
ANCE	% CaCO3	21
s-ANCE	%w/w S	6.6
Fineness Factor	-	2.0
Snas	%w/w S	<0.005
a-Snas	moles H ⁺ /t	<5
s-Snas	%w/w S	<0.01
s-Net Acidity	%w/w S	<0.01
a-Net Acidity	moles H ⁺ /t	<5
Liming rate	kg CaCO3/t	<0.75
Net Acidity (WA)	%w/w S	0.029
a-Net Acidity without ANCE	moles H ⁺ /t	18
Liming rate without ANCE	kg CaCO3/t	1.3

			r			
Moisture	10/24/W/21/25 (no. 10)	(0)0000070445.500007	0.000.000.000	20000000000000000000000000000000000000		
Our Reference:	UNITS	9488-1	9488-5	9488-10	9488-14	9488-16
Your Reference		BH1-01	BH2-01	BH3-02	BH4-01	BH4-03
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	2	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Moisture	%	7.1	13	4.7	3.7	8.4
		070000	13345	2200	J	L water
Moisture						
Our Reference:	UNITS	9488-18	9488-22	9488-26	9488-29	9488-30
Your Reference		BH5-01	BH6-01	BH7-01	BH8-01	BH8-02
Date Sampled		13/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	2	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Moisture	%	3.7	3.9	13	3.4	5.2
	- 70		0.0		J	0.2
Moisture						
Our Reference:	UNITS	9488-36	9488-38	9488-41	9488-45	9488-47
Your Reference		BH9-01	BH9-03	BH10-01	BH11-01	BH11-03
Date Sampled	**********	12/10/2016	12/10/2016	12/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared		21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	_	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Alex yr A	0/	0.00		11=	6.69	88
Moisture	%	12	17	17	14	26
Moisture						
Our Reference:	UNITS	9488-49	9488-53	9488-55	9488-58	9488-61
Your Reference	014110	BH12-01	BH13-01	BH13-04	BH14-01	BH15-01
Date Sampled		13/10/2016	13/10/2016	13/10/2016	12/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
100000000000000000000000000000000000000				0/5/5/80	(4,440.)	
Date prepared		21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Moisture	%	16	4.3	7.4	16	18
					i	1
Moisture		(g ggasserin	9 WWW.00400		21922 ALAS II	92000000000
Our Reference:	UNITS	9488-64	9488-67	9488-72	9488-76	9488-80
Your Reference		BH16-01	BH17-01	BH18-01	BH19-01	BH20-01
Date Sampled		12/10/2016	13/10/2016	13/10/2016	13/10/2016	12/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	<u> </u>	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Moisture	%	13	21	16	17	11
mosture	70	1.0		10		4.1

Moisture						
Our Reference:	UNITS	9488-83	9488-84	9488-85	9488-89	9488-97
Your Reference		BH20-04	T1-01	T1-02	T2-01	T3-04
Date Sampled		12/10/2016	13/10/2016	13/10/2016	13/10/2016	13/10/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed		24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Moisture	%	22	21	22	18	26

Moisture Our Reference: Your Reference Date Sampled	UNITS	9488-98 T4-01 13/10/2016	9488-103 T5-01 13/10/2016	9488-107 T6-01 13/10/2016
Type of sample Date prepared	-	Soil 21/10/2016	Soil 21/10/2016	Soil 21/10/2016
Date analysed Moisture	- %	24/10/2016 16	24/10/2016 20	24/10/2016 19

HM in water - dissolved Our Reference:	UNITS	9488-108	9488-109
Your Reference	014115	9400-100 R1	R2
Date Sampled		13/10/2016	13/10/2016
Type of sample		Water	Water
Date prepared	-	19/10/2016	19/10/2016
Date analysed	-	19/10/2016	19/10/2016
Arsenic-Dissolved	μg/L	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	<1	<1
Lead-Dissolved	μg/L	<1	<1
Nickel-Dissolved	μg/L	<1	<1
Zinc-Dissolved	μg/L	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	'TEQ PQL' values are assuming all contributing PAHs reported as <pql 'teq="" <pql="" actually="" all="" and="" approach="" are="" as="" assuming="" at="" be="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" is="" least<="" may="" most="" not="" pahs="" positive="" pql.="" present.="" reported="" td="" teq="" teqs="" that="" the="" this="" to="" values="" zero'="" zero.=""></pql>
	 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" li="" pql.<="" stipulated="" the=""> </pql></pql>
	Hence a mid-point between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
	Note, the Total +ve Cresols or Phenols PQL is reflective of the lowest individual PQL and is therefore" Total +ve Cresols or Phenols" is simply a sum of the positive individual Cresols or Phenols.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECDorGC-MS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-015	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
ORG-031	Acid herbicides and speciated phenols in soil by DCM:Acetone extraction with derivatisation and determination by GC-MS.

Method ID	Methodology Summary
	Haloacetic acids in waters are derivatised and analysed by GC-ECD. Acid herbicides, speciated phenols, carbamates and ureas in water by DCM extraction with derivatisation and determination by GC-MS.
	Analysed by MPL, NATA accrediation 2901.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-013	Cyanide - total determined colourimetrically after distillation, based on APHA latest edition, 4500-CN_C,E. Free cyanide determined colourimetrically after filtration and confirmed by diffusion. Solids are extracted in a caustic media prior to distillation and analysis.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically by discrete analyser.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only as analysis outside of the APHA storage times.
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2um reported.
Inorg-036	Total Organic Carbon or Matter - A titrimetric method that measures the oxidisable organic content of soils.
Inorg-055	Nitrate - determined colourimetrically. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically based on EPA350.1 and APHA latest edition 4500-NH3 F, Soils are analysed following a KCI extraction.
Inorg-115	Sulphate by turbidity using Discrete Analyser
Inorg-087	Chloride by colourimetry using Discrete Analyser
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.

		Clie	nt Reference	e: 15	0738-01 - Sr	nith Bay Baseline Ass	essment	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
/TRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		S _i e
Date extracted	1.00			20/10/2 016	9488-55	20/10/2016 20/10/2016	LCS-1	20/10/2016
Date analysed	; ≠ :			24/10/2 016	9488-55	24/10/2016 24/10/2016	LCS-1	24/10/2016
vTRHC6 - C9	mg/kg	25	Org-016	<25	9488-55	<25 <25	LCS-1	104%
vTRHC6 - C10	mg/kg	25	Org-016	<25	9488-55	<25 <25	LCS-1	104%
Benzene	mg/kg	0.2	Org-016	<0.2	9488-55	<0.2 <0.2	LCS-1	102%
Toluene	mg/kg	0.5	Org-016	<0.5	9488-55	<0.5 <0.5	LCS-1	105%
Ethylbenzene	mg/kg	1	Org-016	<1	9488-55	<1 <1	LCS-1	100%
m+p-xylene	mg/kg	2	Org-016	2	9488-55	<2 <2	LCS-1	106%
o-Xylene	mg/kg	1	Org-016	<1	9488-55	<1 <1	LCS-1	102%
Naphthalene	mg/kg	1	Org-014	<1	9488-55	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	105	9488-55	104 103 RPD:1	LCS-1	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
TRHSoil C10-C40 NEPM					×3/220)	Base II Duplicate II %RPD		A V 7 2020 2 X 10 1 X 10 \$.
Date extracted	*			20/10/2 016	9488-67	20/10/2016 20/10/2016	LCS-1	20/10/2016
Date analysed	353			21/10/2 016	9488-67	22/10/2016 22/10/2016	LCS-1	21/10/2016
TRHC10 - C14	mg/kg	50	Org-003	<50	9488-67	<50 <50	LCS-1	97%
TRHC15 - C28	mg/kg	100	Org-003	<100	9488-67	<100 <100	LCS-1	87%
TRHC29 - C36	mg/kg	100	Org-003	<100	9488-67	<100 <100	LCS-1	93%
TRH>C10-C16	mg/kg	50	Org-003	<50	9488-67	<50 <50	LCS-1	97%
TRH>C16-C34	mg/kg	100	Org-003	<100	9488-67	<100 <100	LCS-1	87%
TRH>C34-C40	mg/kg	100	Org-003	<100	9488-67	<100 <100	LCS-1	93%
Surrogate o-Terphenyl	%		Org-003	78	9488-67	82 82 RPD:0	LCS-1	108%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			20/10/2	9488-67	20/10/2016 20/10/2016	LCS-1	20/10/2016
Dato Oxtradioa	222			016	010007	20/10/2010 20/10/2010	200 1	20/10/2010
Date analysed	353			22/10/2 016	9488-67	22/10/2016 22/10/2016	LCS-1	22/10/2016
Naphthalene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	94%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	86%
Acenaphthene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	92%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	98%
Anthracene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	92%
Pyrene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	90%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
,-,		55.5		<0.1	9488-67	<0.1 <0.1	LCS-1	102%

Client Reference: 150738-01 - Smith Bay Baseline Assessment												
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery				
Benzo(b,j&k) fluoranthene	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	[NR]	[NR]				
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	9488-67	<0.05 <0.05	LCS-1	98%				
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]				
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]				
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]				
Surrogate p-Terphenyl- d ₁₄	%		Org-012	94	9488-67	96 94 RPD:2	LCS-1	86%				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
Speciated Phenols in Soil						Base II Duplicate II %RPD						
Date extracted	-		Org-012	20/10/2 016	9488-67	20/10/2016 20/10/2016	LCS-1	20/10/2016				
Date analysed	3 4 3		Org-012	22/10/2 016	9488-67	22/10/2016 22/10/2016	LCS-1	22/10/2016				
Phenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	LCS-1	82%				
2-Chlorophenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	LCS-1	84%				
2-Methylphenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	LCS-1	80%				
3/4-Methylphenol	mg/kg	0.4	Org-012	<0.4	9488-67	<0.4 <0.4	[NR]	[NR]				
2-Nitrophenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	[NR]	[NR]				
2,4-Dimethylphenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	[NR]	[NR]				
2,4-Dichlorophenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	[NR]	[NR]				
2,6-Dichlorophenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	LCS-1	82%				
2,4,5-Trichlorophenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	[NR]	[NR]				
2,4,6-Trichlorophenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	[NR]	[NR]				
2,4-Dinitrophenol	mg/kg	2	Org-012	<2	9488-67	<2 <2	[NR]	[NR]				
4-Nitrophenol	mg/kg	4	Org-012	<4	9488-67	<4 <4	[NR]	[NR]				
2,3,4,6- Tetrachlorophenol	mg/kg	0.2	Org-012	<0.2	9488-67	<0.2 <0.2	[NR]	[NR]				
Pentachlorophenol	mg/kg	1	Org-012	<1	9488-67	<1 <1	LCS-1	86%				
4-Chloro-3-Methylphenol	mg/kg	2	Org-012	2	9488-67	<2 <2	[NR]	[NR]				
Surrogate Phenol-de	%		Org-012	90	9488-67	92 94 RPD:2	LCS-1	92%				

QUALITY CONTROL OCP in Soil - NEPM	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date extracted	-			20/10/2 016	9488-67	20/10/2016 20/10/2016	LCS-1	20/10/2016
Date analysed	:2%			22/10/2 016	9488-67	22/10/2016 22/10/2016	LCS-1	22/10/2016
alpha-BHC	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	86%
Hexachlorobenzene	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	86%
gamma-BHC	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Heptachlor	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	84%
delta-BHC	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	88%
Heptachlor Epoxide	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	88%
gamma-Chlordane	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	88%
alpha-chlordane	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	90%
Dieldrin	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	86%
Endrin	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	92%
Endosulfan II	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
pp-DDD	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	92%
Endrin Aldehyde	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	80%
Methoxychlor	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Mirex	mg/kg	0.5	Org-012	<0.5	9488-67	<0.5 <0.5	[NR]	[NR]
Toxaphene	mg/kg	2	Org-012	2	9488-67	<2 <2	[NR]	[NR]
Surrogate TCMX	%		Org-012	94	9488-67	96 94 RPD:2	LCS-1	82%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OP in Soil					3.10	Base II Duplicate II %RPD		Thousand The Control of the Control
Date extracted	-			20/10/2 016	9488-67	20/10/2016 20/10/2016	LCS-1	20/10/2016
Date analysed	2			22/10/2 016	9488-67	22/10/2016 22/10/2016	LCS-1	22/10/2016
Chlorpyrifos	mg/kg	0.1	Org-015	<0.1	9488-67	<0.1 <0.1	LCS-1	90%
Azinphos-methyl	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyrifos-methyl	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorovos	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	LCS-1	80%
Fenitrothion	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	LCS-1	80%
Malathion	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Parathion	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Ronnel	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-015	94	9488-67	96 94 RPD:2	LCS-1	82%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			20/10/2 016	9488-67	20/10/2016 20/10/2016	LCS-1	20/10/2016
Date analysed				22/10/2 016	9488-67	22/10/2016 22/10/2016	LCS-1	22/10/2010
Aroclor 1016	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	LCS-1	100%
Aroclor 1260	mg/kg	0.1	Org-012	<0.1	9488-67	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-012	94	9488-67	96 94 RPD:2	LCS-1	82%

		Clie	ent Reference	e: 15	0738-01 - Sn	nith Bay Baseline Ass	essment	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Synthetic Pyrethroids in soil						Base II Duplicate II %RPD		3,2
Date extracted	? = :			20/10/2 016	9488-67	20/10/2016 20/10/2016	LCS-1	20/10/2016
Date analysed	S=5			22/10/2 016	9488-67	22/10/2016 22/10/2016	LCS-1	22/10/2016
Bifenthrin	mg/kg	0.5	Org-012	<0.5	9488-67	<0.5 <0.5	LCS-1	102%
Cyfluthrin	mg/Kg	2	Org-012	2	[NT]	[NT]	[NR]	[NR]
Cypermethrin	mg/kg	2	Org-012	2	[NT]	[NT]	[NR]	[NR]
Deltamethrin	mg/kg	0.5	Org-012	<0.5	[NT]	[NT]	[NR]	[NR]
Esfenvalerate	mg/kg	0.5	Org-012	<0.5	[NT]	[NT]	[NR]	[NR]
[-Cyhalothrin	mg/kg	0.5	Org-012	<0.5	[NT]	[NT]	LCS-1	108%
cis-Permethrin	mg/kg	0.5	Org-012	<0.5	[NT]	[NT]	[NR]	[NR]
trans-Permethrin	mg/kg	0.5	Org-012	<0.5	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
QOALITT GOITTIGE	Cruio	I Gal	IVE II IOD	Diank	Sm#	Duplicate results	Ориссии	Recovery
Triazine Herbicides in Soil						Base II Duplicate II %RPD		
Date extracted	3#3			20/10/2 016	9488-67	20/10/2016 20/10/2016	LCS-1	20/10/2016
Date analysed	-			22/10/2 016	9488-67	22/10/2016 22/10/2016	LCS-1	22/10/2016
Atrazine	mg/kg	0.5	Org-012	<0.5	9488-67	<0.5 <0.5	LCS-1	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#		55	Recovery
Phenoxy Acid Herbicides in Soil						Base II Duplicate II %RPD		
Clopyralid	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
3,5-Dichlorobenzoic acid	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
o-Chlorophenoxy acetic acid	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
4-CPA	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
Dicamba	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	LCS-1	115%
Mecoprop	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	LCS-1	111%
MCPA	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	LCS-1	100%
Dichloroprop	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
2,4-D	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	LCS-1	81%
Bromoxynil	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
Triclopyr	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
2,4,5-TP (Silvex)	0.0000000000000000000000000000000000000	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
2,4,5-1F (Silvex)	mg/kg	0.5	ORG-031	<0.5	20 100	19 000	LCS-1	80%
	mg/kg	15000000	A 1900 CONTRACTOR AND A 100 CO		[NT]	[NT]	1.0000000	1000000
MCPB	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
2.4-DB	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
Dinoseb	mg/kg	1	ORG-031	<1.0	[NT]	[NT]	[NR]	[NR]
loxynil	mg/kg	1	ORG-031	<1.0	[NT]	[NT]	[NR]	[NR]
Picloram	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
DCPA (Chlorthal) Diacid	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]

			ent Referenc	1		nith Bay Baseline Ass		12 0 20
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Phenoxy Acid Herbicides n Soil						Base II Duplicate II %RPD		
Acifluorfen	mg/kg	2	ORG-031	<2.0	[NT]	[NT]	[NR]	[NR]
2,4,6-T	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
2,6-D	mg/kg	0.5	ORG-031	<0.5	[NT]	[NT]	[NR]	[NR]
Surrogate: 2,4-DCPA	%		ORG-031	88	[NT]	[NT]	LCS-1	94%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
NEPM screen metals in soil					Giler	Base II Duplicate II %RPD		recovery
Date digested	170			21/10/2 016	9488-30	21/10/2016 21/10/2016	LCS-1	21/10/2016
Date analysed	18.0			24/10/2 016	9488-30	24/10/2016 24/10/2016	LCS-1	24/10/2016
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	9488-30	<4 <4	LCS-1	96%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	9488-30	<0.4 <0.4	LCS-1	103%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	9488-30	9 13 RPD:36	LCS-1	98%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	9488-30	3 2 RPD:40	LCS-1	99%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	9488-30	5 6 RPD:18	LCS-1	96%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	9488-30	<0.1 <0.1	LCS-1	111%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	9488-30	2 3 RPD:40	LCS-1	98%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	9488-30	28 8 RPD:111	LCS-1	99%
Selenium	mg/kg	2	Metals-020 ICP-AES	2	9488-30	<2 <2	LCS-1	98%
Beryllium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	103%
Boron	mg/kg	3	Metals-020 ICP-AES	⋖	[NT]	[NT]	LCS-1	104%
Cobalt	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	104%
Manganese	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	102%
Iron	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	98%
Phosphorus	mg/kg	10	Metals-020 ICP-AES	<10	9488-30	160 160 RPD: 0	LCS-1	94%
Silver	mg/kg	1	Metals-020 ICP-AES	<1	9488-30	<1 <1	LCS-1	98%
Tin	mg/kg	1	Metals-020 ICP-AES	<1	9488-30	<1 <1	LCS-1	97%
Molybdenum	mg/kg	1	Metals-020 ICP-AES	<1	9488-30	<1 <1	LCS-1	95%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Inorg - soil NEPM						Base II Duplicate II %RPD		9
Date prepared	-			24/10/2 016	9488-16	24/10/2016 24/10/2016	LCS-1	24/10/2016
Date analysed	121			24/10/2 016	9488-16	24/10/2016 24/10/2016	LCS-1	24/10/2016
Free Cyanide in soil	mg/kg	0.5	Inorg-013	<0.5	9488-16	<0.5 <0.5	LCS-1	99%
Hexavalent Chromium, Cr ⁶⁺	mg/kg	1	Inorg-024	<1	9488-16	<1 <1	LCS-1	98%
pH 1:5 soil:water	pHUnits		Inorg-001	[NT]	9488-16	8.8 9.0 RPD:2	LCS-1	99%
pH1:5soil:CaCl2	pHUnits		Inorg-001	[NT]	[NT]	[NT]	LCS-1	100%
Clay in soils <2um	% (w/w)		AS1289.3.6 .3	[TN]	[NT]	[NT]	[NR]	[NR]
Total Organic Carbon (Walkley Black)	mg/kg	1000	Inorg-036	<1000	[NT]	[NT]	LCS-1	102%
Nitrate as N in soil	mg/kg	0.5	Inorg-055	<0.5	9488-16	<0.5 <0.5	LCS-1	78%
Nitrite as N in soil	mg/kg	0.1	Inorg-055	<0.1	9488-16	0.3 0.2 RPD:40	LCS-1	90%
Ammonia as N in soil	mg/kg	0.5	Inorg-057	<0.5	9488-16	7.1 7.0 RPD:1	LCS-1	103%
Sulphate, SO4	mg/kg	10	Inorg-115	<10	9488-16	68 49 RPD: 32	LCS-1	90%
Chloride, Cl	mg/kg	10	Inorg-087	<10	9488-16	170 170 RPD: 0	LCS-1	113%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Cation exchange capacity		iv.		av		Base II Duplicate II %RPD		
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	105%
Exchangeable K	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	102%
Exchangeable Mg	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	101%
Exchangeable Na	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	102%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
SPOCAS					Sm#	Base II Duplicate II %RPD		Recovery
Date prepared				[NT]	9488-56	19/10/2016 19/10/2016	LCS-1	19/10/2016
Date analysed	320			[NT]	9488-56	25/10/2016 25/10/2016	LCS-1	25/10/2016
pH kd	pH units		Inorg-064	[NT]	9488-56	9.8 9.8 RPD:0	LCS-1	100%
TAA	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	<5 <5	LCS-1	96%
pH ox	pH units		Inorg-064	[NT]	9488-56	8.0 8.0 RPD: 0	LCS-1	100%
TPA	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	<5 <5	LCS-1	87%
Skci	%w/w S	0.005	Inorg-064	[NT]	9488-56	0.02 0.02 RPD:0	[NR]	[NR]
Саксі	%w/w	0.005	Inorg-064	[TN]	9488-56	0.21 0.28 RPD: 29	[NR]	[NR]
Мдксі	%w/w	0.005	Inorg-064	[NT]	9488-56	0.034 0.041 RPD: 19	[NR]	[NR]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS					311#	Base II Duplicate II %RPD		Recovery
Sp	%w/w	0.005	Inorg-064	[NT]	9488-56	0.05 0.05 RPD:0	[NR]	[NR]
Сар	%w/w	0.005	Inorg-064	[NT]	9488-56	7.5 7.6 RPD:1	[NR]	[NR]
MgP	%w/w	0.005	Inorg-064	[NT]	9488-56	0.30 0.32 RPD: 6	[NR]	[NR]
a-ANCE	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	4100 4100 RPD: 0	[NR]	[NR]
SHCI	%w/w S	0.005	Inorg-064	[NT]	9488-56	<0.005 <0.005	[NR]	[NR]
TSA	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	<5 <5	[NR]	[NR]
s-TAA	%w/w S	0.01	Inorg-064	[NT]	9488-56	<0.01 <0.01	[NR]	[NR]
s-TPA	%w/w S	0.01	Inorg-064	[NT]	9488-56	<0.01 <0.01	[NR]	[NR]
s-TSA	%w/w S	0.01	Inorg-064	[NT]	9488-56	<0.01 <0.01	[NR]	[NR]
Spos	%w/w	0.005	Inorg-064	[NT]	9488-56	0.03 0.03 RPD: 0	[NR]	[NR]
a-Spos	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	18 20 RPD:11	[NR]	[NR]
CaA	%w/w	0.005	Inorg-064	[NT]	9488-56	7.3 7.3 RPD:0	[NR]	[NR]
а-Сал	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	3600 3700 RPD: 3	[NR]	[NR]
s-Ca _A	%w/w S	0.005	Inorg-064	[NT]	9488-56	5.8 5.9 RPD:2	[NR]	[NR]
MgA	%w/w	0.005	Inorg-064	[NT]	9488-56	0.27 0.28 RPD: 4	[NR]	[NR]
a-MgA	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	220 230 RPD: 4	[NR]	[NR]
s-MgA	%w/w S	0.005	Inorg-064	[NT]	9488-56	0.36 0.37 RPD: 3	[NR]	[NR]
ANCE	% CaCO3	0.05	Inorg-064	[NT]	9488-56	21 21 RPD:0	[NR]	[NR]
s-ANCE	%w/w S	0.05	Inorg-064	[NT]	9488-56	6.6 6.6 RPD:0	[NR]	[NR]
Fineness Factor	-	1.5	Inorg-064	[NT]	9488-56	2.0 2.0 RPD:0	[NR]	[NR]
SNAS	%w/w S	0.005	Inorg-064	[NT]	9488-56	<0.005 <0.005	[NR]	[NR]
a-Snas	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	<5 <5	[NR]	[NR]
s-Snas	%w/w S	0.01	Inorg-064	[NT]	9488-56	<0.01 <0.01	[NR]	[NR]
s-Net Acidity	%w/w S	0.01	Inorg-064	[NT]	9488-56	<0.01 <0.01	[NR]	[NR]
a-Net Acidity	moles H ⁺ /t	5	Inorg-064	[NT]	9488-56	<5 <5	[NR]	[NR]
Liming rate	kg CaCO3	0.75	Inorg-064	[NT]	9488-56	<0.75 <0.75	[NR]	[NR]
Net Acidity (WA)	%w/w S	0.005	Inorg-068	[NT]	9488-56	0.029 0.032 RPD:10	[NR]	[NR]

		Clie	ent Reference	e: 15	0738-01 - Sn	nith Bay Baseline Ass	essment	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sPOCAS						Base II Duplicate II %RPD		, , , , ,
a-Net Acidity without ANCE	moles H ⁺ /t	10	Inorg-064	[NT]	9488-56	18 20 RPD:11	[NR]	[NR]
Liming rate without ANCE	kg CaCO3	0.75	Inorg-064	[NT]	9488-56	1.3 1.5 RPD: 14	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
Moisture				-				
Date prepared	7.5			[NT]				
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]		Loss was a second	T	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved					SII#	Base Il Duplicate Il %RPD		Recovery
Date prepared	190			19/10/2 016	[NT]	[NT]	LCS-1	19/10/2016
Date analysed	-			19/10/2 016	[NT]	[NT]	LCS-1	19/10/2016
Arsenic-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	105%
Cadmium-Dissolved	μg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-1	106%
Chromium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	107%
Copper-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	103%
Lead-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	105%
Nickel-Dissolved	μg/L	1	Metals-022 ICP-MS	ব	[NT]	[NT]	LCS-1	106%
Zinc-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	106%
Mercury-Dissolved	μg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]	[NT]	LCS-1	108%
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	6	Dup. Sm#	1,000	Duplicate Duplicate + %RP	D		
Date extracted		3	9488-107	20/10/2	016 20/10/201	6		
Date analysed	44		9488-107		016 24/10/201			
vTRHC6 - C9	mg/k		9488-107	<25 <25				
vTRHC6 - C10	mg/k	•	9488-107	<25 <25				
Benzene	mg/k		9488-107	1 2000 MM 1900 4				
Toluene	mg/k							
Ethylbenzene	mg/k		9488-107 9488-107		<1 <1			
m+p-xylene	mg/k		9488-107		<2 <2			
o-Xylene	mg/k		9488-107		<1 <1			
Naphthalene	mg/k		9488-107		<1 <1			

		Client Reference	: 150738-01 - Smith	Bay Baseline As	ssessment
QUALITY CONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD		
Surrogate aaa- Trifluorotoluene	%	9488-107	103 98 RPD:5		
QUALITY CONTROL TRH Soil C10-C40 NEPM	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD		
Date extracted	(2)	9488-107	20/10/2016 20/10/2016		
Date analysed	-	9488-107	21/10/2016 22/10/2016		
TRHC10 - C14	mg/kg	9488-107	<50 <50		
TRHC15 - C28	mg/kg	9488-107	<100 <100		
TRHC29 - C36	mg/kg	9488-107	<100 <100		
TRH>C10-C16	mg/kg	9488-107	<50 <50		
TRH>C16-C34	mg/kg	9488-107	<100 <100		
TRH>C34-C40	mg/kg	9488-107	<100 <100		
Surrogate o-Terphenyl	%	9488-107	81 79 RPD: 2		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil	er .		Base + Duplicate + %RPD		
Date extracted	(40)	[NT]	[NT]	LCS-2	20/10/2016
Date analysed	:e::	[NT]	[NT]	LCS-2	22/10/2016
Naphthalene	mg/kg	[NT]	[NT]	LCS-2	94%
Acenaphthylene	mg/kg	[NT]	[NT]	LCS-2	86%
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	LCS-2	92%
Phenanthrene	mg/kg	[NT]	[NT]	LCS-2	98%
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	LCS-2	92%
Pyrene	mg/kg	[NT]	[NT]	LCS-2	90%
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	LCS-2	102%
Benzo(b,j&k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	LCS-2	98%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%	[TN]	[NT]	LCS-2	86%

		Cheffit Kelefell	ice. 130/30-01 - 311111111	bay baseinte A	SSESSIIIEIIL			
QUALITY CONTROL NEPM screen metals in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date digested	120	9488-61	21/10/2016 21/10/2016	LCS-2	21/10/2016			
Date analysed	723	9488-61	24/10/2016 24/10/2016	LCS-2	24/10/2016			
Arsenic	mg/kg	9488-61	4 <4	LCS-2	96%			
Cadmium	mg/kg	9488-61	<0.4 <0.4	LCS-2	103%			
Chromium	mg/kg	9488-61	14 15 RPD:7	LCS-2	98%			
Copper	mg/kg	9488-61	5 5 RPD:0	LCS-2	99%			
Lead	mg/kg	9488-61	6 6 RPD:0	LCS-2	96%			
Mercury	mg/kg	9488-61	<0.1 <0.1	LCS-2	113%			
Nickel	mg/kg	9488-61	5 6 RPD:18	LCS-2	98%			
Zinc	mg/kg	9488-61	8 9 RPD:12	LCS-2	99%			
Selenium	mg/kg	9488-61	<2 <2	LCS-2	98%			
Beryllium	mg/kg	[NT]	[NT]	LCS-2	103%			
Boron	mg/kg	[NT]	[NT]	LCS-2	104%			
Cobalt	mg/kg	[NT]	[NT]	LCS-2	104%			
Manganese	mg/kg	[NT]	[NT]	LCS-2	102%			
Iron	mg/kg	[NT]	[NT]	LCS-2	98%			
Phosphorus	mg/kg	9488-61	280 270 RPD: 4	LCS-2	96%			
Silver	mg/kg	9488-61	<1 <1	LCS-2	98%			
Tin	mg/kg	9488-61	<1 <1	LCS-2	97%			
Molybdenum	mg/kg	9488-61	<1 <1	LCS-2	95%			

		Client Reference	: 150738-01 - Smith	Bay Baseline As	sessment
QUALITY CONTROL Misc Inorg - soil NEPM	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date prepared	140	9488-89	24/10/2016 24/10/2016		
Date analysed	743	9488-89	24/10/2016 24/10/2016		
Free Cyanide in soil	mg/kg	9488-89	<0.5 <0.5		
Hexavalent Chromium, Cr ⁶⁺	mg/kg	9488-89	<1 <1		
pH 1:5 soil:water	pH Units	[NT]	[NT]		
pH1:5soil:CaCl2	pH Units	[NT]	[NT]		
Clay in soils <2um	% (w/w)	[NT]	[NT]		
Total Organic Carbon (Walkley Black)	mg/kg	[NT]	[NT]		
Nitrate as N in soil	mg/kg	9488-89	7.7 7.8 RPD:1		
Nitrite as N in soil	mg/kg	9488-89	<0.1 <0.1		
Ammonia as N in soil	mg/kg	9488-89	<0.5 <0.5		
Sulphate, SO4	mg/kg	[NT]	[NT]		
Chloride, Cl	mg/kg	[NT]	[NT]		
QUALITYCONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	9488-107	20/10/2016
Date analysed	127	[NT]	[NT]	9488-107	25/10/2016
vTRHC6 - C9	mg/kg	[NT]	[NT]	9488-107	101%
vTRHC6 - C10	mg/kg	[NT]	[NT]	9488-107	101%
Benzene	mg/kg	[NT]	[NT]	9488-107	99%
Toluene	mg/kg	[NT]	[NT]	9488-107	103%
Ethylbenzene	mg/kg	[NT]	[NT]	9488-107	98%
m+p-xylene	mg/kg	[NT]	[NT]	9488-107	103%
o-Xylene	mg/kg	[NT]	[NT]	9488-107	98%
Naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	9488-107	102%

		Client Reference	e: 150738-01 - Smith	Bay Baseline As	sessment
QUALITY CONTROL TRH Soil C10-C40 NEPM	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	40	[NT]	[NT]	9488-103	20/10/2016
Date analysed	143	[NT]	[NT]	9488-103	21/10/2016
TRHC10 - C14	mg/kg	[NT]	[NT]	9488-103	90%
TRHC 15 - C28	mg/kg	[NT]	[NT]	9488-103	81%
TRHC29 - C36	mg/kg	[NT]	[NT]	9488-103	71%
TRH>C10-C16	mg/kg	[NT]	[NT]	9488-103	90%
TRH>C16-C34	mg/kg	[NT]	[NT]	9488-103	81%
TRH>C34-C40	mg/kg	[NT]	[NT]	9488-103	71%
Surrogate o-Terphenyl	%	[NT]	[NT]	9488-103	104%
QUALITY CONTROL NEPM screen metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	1437	9488-103	21/10/2016 21/10/2016	9488-29	21/10/2016
Date analysed		9488-103	24/10/2016 24/10/2016	9488-29	24/10/2016
Arsenic	mg/kg	9488-103	<4 <4	9488-29	93%
Cadmium	mg/kg	9488-103	<0.4 <0.4	9488-29	95%
Chromium	mg/kg	9488-103	17 17 RPD:0	9488-29	92%
Copper	mg/kg	9488-103	1 <1	9488-29	100%
Lead	mg/kg	9488-103	6 6 RPD:0	9488-29	91%
Mercury	mg/kg	9488-103	<0.1 <0.1	9488-29	113%
Nickel	mg/kg	9488-103	4 4 RPD:0	9488-29	90%
Zinc	mg/kg	9488-103	5 4 RPD:22	9488-29	96%
Selenium	mg/kg	9488-103	<2 <2	9488-29	96%
Beryllium	mg/kg	[NT]	[NT]	9488-29	93%
Boron	mg/kg	[NT]	[NT]	9488-29	105%
Cobalt	mg/kg	[NT]	[NT]	9488-29	96%
Manganese	mg/kg	[NT]	[NT]	9488-29	114%
Iron	mg/kg	[TN]	[TN]	9488-29	#
Phosphorus	mg/kg	[NT]	[TN]	9488-29	#
Silver	mg/kg	9488-103	<1 <1	9488-29	97%
Tin	mg/kg	9488-103	<1 <1	9488-29	89%
Molybdenum	mg/kg	9488-103	<1 <1	9488-29	88%

		Client Reference	e: 150738-01 - Smith	Bay Baseline As	sessment
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Misc Inorg - soil NEPM		g	Base + Duplicate + %RPD		
Date prepared	*	[NT]	[NT]	9488-16	24/10/2016
Date analysed	363	[NT]	[NT]	9488-16	24/10/2016
Free Cyanide in soil	mg/kg	[NT]	[NT]	9488-16	83%
Hexavalent Chromium, Cr ⁶⁺	mg/kg	[NT]	[NT]	9488-16	93%
pH 1:5 soil:water	pH Units	[NT]	[NT]	[NR]	[NR]
pH 1:5 soil:CaCl2	pH Units	[NT]	[NT]	[NR]	[NR]
Clay in soils <2um	% (w/w)	[NT]	[NT]	[NR]	[NR]
Total Organic Carbon (Walkley Black)	mg/kg	[NT]	[NT]	[NR]	[NR]
Nitrate as N in soil	mg/kg	[NT]	[NT]	9488-16	#
Nitrite as N in soil	mg/kg	[NT]	[NT]	9488-16	104%
Ammonia as N in soil	mg/kg	[NT]	[NT]	9488-16	74%
Sulphate, SO4	mg/kg	[NT]	[NT]	[NR]	[NR]
Chloride, Cl	mg/kg	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL NEPM screen metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	350	[NT]	[NT]	9488-98	21/10/2016
Date analysed	: = :	[NT]	[NT]	9488-98	24/10/2016
Arsenic	mg/kg	[NT]	[NT]	9488-98	98%
Cadmium	mg/kg	[NT]	[NT]	9488-98	73%
Chromium	mg/kg	[NT]	[NT]	9488-98	84%
Copper	mg/kg	[NT]	[NT]	9488-98	111%
Lead	mg/kg	[NT]	[NT]	9488-98	70%
Mercury	mg/kg	[NT]	[NT]	9488-98	102%
Nickel	mg/kg	[NT]	[NT]	9488-98	71%
Zinc	mg/kg	[NT]	[NT]	9488-98	85%
Selenium	mg/kg	[NT]	[NT]	9488-98	96%
Beryllium	mg/kg	[NT]	[NT]	9488-98	82%
Boron	mg/kg	[NT]	[NT]	9488-98	124%
Cobalt	mg/kg	[NT]	[NT]	9488-98	78%
Manganese	mg/kg	[NT]	[NT]	9488-98	84%
Iron	mg/kg	[NT]	[NT]	9488-98	#
Phosphorus	mg/kg	[NT]	[NT]	9488-98	#
Silver	mg/kg	[NT]	[NT]	9488-98	111%
Tin	mg/kg	[NT]	[NT]	9488-98	80%
Molybdenum	mg/kg	[NT]	[NT]	9488-98	##

Report Comments:

Acid Herbicides analysed by MPL, report 187514.

Clay analysed by Envirolab Sydney, report 155602.

METALS - # Percent recovery is not possible to report due to the high concentration of Iron & Phosphorus in the samples. However an acceptable recovery was obtained for the LCS.

Percent recovery not available due to matrix interference for Molybdenum, however an acceptable recovery was achieved for the LCS.

The RPD for duplicate results 9488-30 for Zinc is accepted due to the inhomogeneous nature of the sample. Triplicate analysis confirms this.

sPOCAS analysed by MPL, report no. 187397

INORGANICS: # Spike recovery was not available for Nitrate due to sample matrix interference. However an acceptable recovery was achieved for the LCS.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

A division of Envirolab Group

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

DATA QUALITY ASSESSMENT SUMMARY

Report Details					
Envirolab Report Reference	9488				
Client ID	LBW Environmental Projects				
Project Reference	150738-01 - Smith Bay Baseline Assessment				
Date Issued	26/10/2016				

QC DATA:

All laboratory QC data was within the Envirolab Group's specifications except:

QC Type	QC Type Reference Analysis		Comments		
Precision(as %RPD)	9488-30	Zinc	111% RPD fails internal acceptance criteria		
Spike Recovery %	9488-29	Iron	Fails internal acceptance criteria		
Spike Recovery %	9488-29	Phosphorus	Fails internal acceptance criteria		
Spike Recovery %	9488-16	Nitrate as N in soil	Fails internal acceptance criteria		
Spike Recovery %	9488-98	Iron	Fails internal acceptance criteria		
Spike Recovery %	9488-98	Molybdenum	Fails internal acceptance criteria		
Spike Recovery %	9488-98	Phosphorus	Fails internal acceptance criteria		

The RPD for duplicate results 9488-30 for Zinc is accepted due to the inhomogeneous nature of the sample. Triplicate analysis confirms this.

- # Percent recovery is not possible to report due to the high concentration of Iron & Phosphorus in the samples. However an acceptable recovery was obtained for the LCS.
- # Spike recovery was not available for Nitrate due to sample matrix interference. However an acceptable recovery was achieved for the LCS.

Percent recovery not available due to matrix interference for Molybdenum, however an acceptable recovery was achieved for the LCS.

See Report 9488-[R00] for QA/QC details

HOLDING TIME COMPLIANCE EVALUATION:

The table below summarizes compliance with preservation / holding times (based on AS/APHA/ISO/NEPM/USEPA reference documents and standards):-

Analysis	Date Sampled	Date Extracted	Date Analysed	Accept
Cation exchange capacity	12/10/2016			1
	13/10/2016			✓
HM in water - dissolved	13/10/2016	19/10/2016	19/10/2016	1
Misc Inorg - soil NEPM				
Ammonia as N in soil	12/10/2016	24/10/2016	24/10/2016	1
	13/10/2016	24/10/2016	24/10/2016	✓
Chloride, Cl	12/10/2016	24/10/2016	24/10/2016	√
	13/10/2016	24/10/2016	24/10/2016	1
Sulphate, SO4	12/10/2016	24/10/2016	24/10/2016	√
	13/10/2016	24/10/2016	24/10/2016	✓

Page 1 of 3 9488-DQAS

A division of Envirolab Group

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Clay in soils <2um	12/10/2016	24/10/2016	24/10/2016	1
	13/10/2016	24/10/2016	24/10/2016	✓
Free Cyanide in soil	13/10/2016	24/10/2016	24/10/2016	√
Hexavalent Chromium, Cr ⁶⁺	13/10/2016	24/10/2016	24/10/2016	1
Nitrate as N in soil	12/10/2016	24/10/2016	24/10/2016	1
	13/10/2016	24/10/2016	24/10/2016	✓
Nitrite as N in soil	12/10/2016	24/10/2016	24/10/2016	1
	13/10/2016	24/10/2016	24/10/2016	1
pH 1:5 soil:water	12/10/2016	24/10/2016	24/10/2016	X
	13/10/2016	24/10/2016	24/10/2016	X
pH 1:5 soil:CaCl₂	12/10/2016	24/10/2016	24/10/2016	X
	13/10/2016	24/10/2016	24/10/2016	X
Total Organic Carbon (Walkley Black)	12/10/2016	24/10/2016	24/10/2016	1
	13/10/2016	24/10/2016	24/10/2016	✓
Moisture	12/10/2016	21/10/2016	24/10/2016	√
	13/10/2016	21/10/2016	24/10/2016	1
NEPM screen metals in soil	12/10/2016	21/10/2016	24/10/2016	1
	13/10/2016	21/10/2016	24/10/2016	✓
OCP in Soil - NEPM	12/10/2016	20/10/2016	22/10/2016	1
	13/10/2016	20/10/2016	22/10/2016	1
OP in Soil	12/10/2016	20/10/2016	22/10/2016	1
	13/10/2016	20/10/2016	22/10/2016	1
PAHs in Soil	12/10/2016	20/10/2016	22/10/2016	1
	13/10/2016	20/10/2016	22/10/2016	1
PCBs in Soil	13/10/2016	20/10/2016	22/10/2016	✓
Phenoxy Acid Herbicides in Soil	12/10/2016	24/10/2016	25/10/2016	1
	13/10/2016	24/10/2016	25/10/2016	✓
Speciated Phenols in Soil	13/10/2016	20/10/2016	22/10/2016	1
sPOCAS	13/10/2016	19/10/2016	25/10/2016	X
Synthetic Pyrethroids in soil	13/10/2016	20/10/2016	22/10/2016	✓
TRH Soil C10-C40 NEPM	12/10/2016	20/10/2016	22/10/2016	✓
	13/10/2016	20/10/2016	21/10/2016	1
	13/10/2016	20/10/2016	22/10/2016	✓
Triazine Herbicides in Soil	13/10/2016	20/10/2016	22/10/2016	√
vTRH(C6-C10)/BTEXN in Soil	12/10/2016	20/10/2016	24/10/2016	1
	13/10/2016	20/10/2016	24/10/2016	1

Sample received for Spocas outside recommended technical holding time.

Page 2 of 3 9488-DQAS

A division of Envirolab Group

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

COMPLIANCE TO QC FREQUENCY (NEPM):

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

	Evaluation
Duplicate(s) was performed as per NEPM frequency	✓
Laboratory Control Sample(s) was analysed with the samples received	✓
A Method Blank was performed with the samples received	✓
Matrix spike(s) was performed as per NEPM frequency	√

Refer to Certificate of Analysis for all Quality Control data.

ADDITIONAL REPORT COMMENTS:

Page 3 of 3 9488-DQAS

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	LBW Environmental Projects
Attention	Brad Fitzgerald

Sample Login Details									
Your Reference	150738-01 - Smith Bay Baseline Assessment								
Envirolab Reference	9488								
Date Sample Received	18/10/2016								
Date Instructions Received	18/10/2016								
Date Results Expected to be Reported	26/10/2016								

Sample Condition		
Samples received in appropriate condition for analysis	YES	
No. of Samples Provided	108 Soils, 2 Waters	
Turnaround Time Requested	Standard	
Temperature on receipt (°C)	6.4C	
Cooling Method	Ice Pack	
Sampling Date Provided	YES	

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Pamela Adams	Analisa Mathrick
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: amathrick@envirolab.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample Id	VTRH(C6-C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	Speciated Phenols in Soil	OCP in Soil - NEPM	OP in Soil	PCBs in Soil	Synthetic Pyrethroids in soil	Triazine Herbicides in Soil	Phenoxy Acid Herbicides in Soil	NEPM screen metals in soil	Ammonia as N in soil	Chloride, Cl	Clay in solls <2um	Free Cyanide in soil	Hexavalent Chromium, Cr6+	Nitrate as N in soil	Nitrite as N in soil	pH 1:5 soil:water	pH 1:5 soil:CaCl2	Sulphate, 504	Total Organic Carbon (Walkley Black)	Cation exchange capacity	SPOCAS	HM in water - dissolved	Оп НоІд
BH1-01	1	√	1							1	1	V					1	1								
BH1-02																									П	1
BH1-03																										1
BH1-04											\neg														П	1
BH2-01	1	1	1		1	√					1								1							\Box
BH2-02																									П	✓
BH2-03																									П	1
BH2-04		-																								1
BH3-01																			\neg	\neg						1
BH3-02	1	1	1		1	1					1								1							
BH3-03	1000																									V
BH3-04																										1
BH3-05																										1
BH4-01	t				1	1				1	1	1					1	1	1							
BH4-02	T											Ť														1
BH4-03	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	\Box	1				\Box	- 1
BH4-04																										1
BH5-01	1	1	1		1	1					1	1					1	1	1						П	
BH5-02																П	7								П	1
BH5-03	T														\neg										П	1
BH5-04																				\neg					П	1
BH6-01	1	1	/	1	1	1	1	1	1	1	1	1			1	1	1	1	1					- i		
BH6-02																										1
BH6-03		3 3																								1
BH6-04																										1
BH7-01	1	1	1								1															
BH7-02																										1
BH7-03																										1
BH8-01	1	1	1	1	1	1	1	1	1	1	1	1			1	1	1	1	1							
BH8-02					1	1					1	1					1	1	1			П			\Box	
BH8-03													П									П				1
BH8-04																П									П	1
BH8-05																										1
BH8-06																П										1
BH8-07																										1
BH9-01	П				✓	1				1	1	1					1	1	1						\Box	
BH9-02				2																				- 1		1
BH9-03				-						1	1		1	1				- 5	1		1			ı.	î	

Envirolab Services Pty Ltd - Melbourne ABN 37 112 535 645 -02 1 Dalmore Drive, Scoresby, VIC 3179 Australia Ph +613 9763 2500 Fax +613 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

Sample Id	VTRH[C6-C10]/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	Speciated Phenols in Soil	OCP in Soil - NEPM	OP in Soil	PCBs in Soil	Synthetic Pyrethroids in soil	Triazine Herbicides in Soil	Phenoxy Acid Herbicides in Soil	NEPM screen metals in soil	Ammonia as N in soil	Chloride, Cl	Clay in soils <2um	Free Cyanide in soil	Hexavalent Chromium, Cr6+	Nitrate as N in soil	Nitrite as N in soil	pH 1:5 soil:water	pH 1:5 soil:CaCl2	Sulphate, 504	Total Organic Carbon (Walkley Black)	Cation exchange capacity	sPOCAS	HM in water - dissolved	On Hold
PHO O4																										
BH9-04	-	, ,	_	,				_	-			Н			-	-		_		-	_	-	-	-	\dashv	√
BH9-05				_				ш	_	_		_					_	_		_			Н		\vdash	✓
BH10-01	√	√	√		√	✓		Щ			✓		✓					_	\perp		√		Щ			- 12
BH10-02					Щ	Щ		Щ	_													\Box	Щ		\Box	V
BH10-03																										√
BH10-04			_		_													_				_				1
BH11-01											✓								1					_,		
BH11-02													_													1
BH11-03											1		√	1						1	1	✓	1			
BH11-04																										1
BH12-01		. ,			1	1				✓	✓	1					1	V								
BH12-02																										✓
BH12-03																										1
BH12-04																										✓
BH13-01											1								1							
BH13-02																										1
BH13-04	1	1	1										√								1					
BH13-05		3																						1		
BH13-06																									1	1
BH14-01										Ĺ.	V								1							
BH14-02																										1
BH14-03																										1
BH15-01											√	1					1	1	1							
BH15-02																										1
BH15-03													П							П					\Box	1
BH16-01	1	1	√								1								1							
BH16-02	Ť			\neg				\neg								\vdash				\neg					\Box	1
BH16-03																				\neg					\neg	1
BH17-01	1	1	1	1	1	1	1	1	1	/	1	1			1	1	1	1								
BH17-02	1	23.0		5.50						27.5%	225 7 0.0					2,40	-	1		=				-	\forall	1
BH17-03																										1
BH17-04																					-			-		1
BH17-05																					- 5			-8		V
BH18-01	1	1	/		1	1					1	1	1				1	1			1					
BH18-02					•								MASS OF THE				•				- 50					1
BH18-03																							\neg			1
BH18-04																				\exists						√ ✓
BH19-01	H									√	√	/				\vdash	1	1								· ·
BH19-02	\vdash	-						\vdash		•	V						· V	·		\neg	-		\neg	-	\vdash	1
BH19-03	\vdash							\vdash																		√ ✓
BH19-04	\vdash	-						\vdash			-						\dashv			\neg			\dashv		\dashv	√ ✓
51115 54	1						J.												U. I							V

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample Id	vTRH/C6-C10]/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	Speciated Phenols in Soil	OCP in Soil - NEPM	OP in Soil	PCBs in Soil	Synthetic Pyrethroids in soil	Triazine Herbicides in Soil	Phenoxy Acid Herbicides in Soil	NEPM screen metals in soil	Ammonia as N in soil	Chloride, Cl	Clay in soils <2 um	Free Cyanide in soil	Hexavalent Chromium, Cr6+	Nitrate as N in soil	Nitrite as N in soil	pH 1:5 soil:water	pH 1:5 soil:CaCl2	Sulphate, 504	Total Organic Carbon (Walkley Black)	Cation exchange capacity	sPOCAS	HM in water - dissolved	On Hold
BH20-01					✓	1				1	1								1							
BH20-02																										√
BH20-03																							П			1
BH20-04											1			1						1		1	1			
T1-01	1	1	1		1	1		1			1															
T1-02	1	1	1		1	1		1			1															
T1-03																										1
T1-04																										√
T1-05																										1
T2-01	1	1	1	1	1	1	1	1	1	1	1	1			1	1	1	1	\Box				П		\Box	
T2-02													П										\Box			✓
T2-03													П										П			1
T2-04																							П			1
T2-05																П			\neg				П			√
T3-01														\neg					\Box				П			√
T3-02																							П			√
T3-03																										1
T3-04	1	1	1								1	1					1	1			Ė	ñ.				
T4-01	1	1	V		√	1		1			1															
T4-02																										1
T4-03																										
T4-04																										1
T4-05																										1
T5-01	1	1	1		√	1					1															
T5-02																										√
T5-03																										✓
T5-04																										✓
T6-01	1	1	√		√	1					1	1					1	1								
R1							8 1																		1	
R2																								Ů	✓	
BH10-05																					Ì					1

Project 118e	: Smith Bay Baseline Assessment		Envirolab Services
Job Number	: 150738-01	Primary Laboratory: Envirolab	ENVIROLAB 1a Dalmore Drive Caribbean Park
Project Manager	: Brad Fitzgerald	Laboratory Quote Ref: 16078SA	Scoresby VIC 3179
Email	; brad.fitzgerald@lbwep.com.au		Job No: Ph: (03) 9763 2500
Phone	: 08 8331 2417	Secondary Laboratory: ALS	Date Received: 18/10/16
Results to	results@lbwenvironment.com.au	Laboratory Quote Ref:	Time Received: 10100
Invoice to	gdmin@lbwenvironment.com.du		Received by: IMS Temps Cool Ambient 6-40
	LBW ep's COC REFERENCE (memple delivery group)	Turnaround Required	Cooling: teelicepack)
	150738-01 LTO-02	Standard	Security: Intecharoken/None

	SAMP	LE DETAILS						CHEA	AICAL T	ESTING	REQUI	RED				_
Date Sampled	Sample ID	Sample Matrix	Additional Information / Comments	VEPM HIL Screen	NEPM EIL Screen	deavy Metals (12)	Ha.	OCP, OPP	Herbicides (Acid Hexbs)	RH, BTEX, PAH	Vihate, nitrite, ammonia, phosphorus	ulphate, chlaride	spocas	emillicides /SP		
13.10.2016	BH1-01	Soil				1			I	1	1					
13.10.2013	2 BH1-02	Soil .														
13.10.2016	3 BH1-03	Soil						=%=								
13.10.2016	4 8H1-04	Soil														
13.10.2016	5 BH2-01	Soil				1	1	1		1						
13.10.2016	b BH2-02	los.														
13.10.2016	7 BH2-03	Fol														
13.10.2016	8 BH2-04	lio2														Г
13.10.2016	9 внз-01	Soil											ή],		7	Г
13.10.2016	10 внз-02	Soil				1	1	1		1						Г
13.10.2016	/) BH3-03	lio2									0 0 0					Г
13.10.2016	(Z BH3-04	Soil														Г
13.10.2016	13 BH3-05	lio2														
13.10.2016	14 BH4-01	Soil				1	1	1	1		1.					
13.10.2016	LS 8H4-02	lio2														Г
13.10.2016	16 BH4-03	Soil		1			1				1	1				
13.10.2016	/ } BH4-04	Şoil														
13.10.2016	18 BH5-01	Soil				1	1	1		1	1					Г
13.10.2016	19 BH5-02	Soil														
13.10.2016	20 BH5-03	Soil													7	
13.10.2016	21 BH5-04	Soil														
LBW op A	AUTHORISATION	LA	LABORATORY RECEIPT				5	4	2	4	4	1	0	0	0	0
quested by:		Received by:	250 000					A	ddition	al Con	ments	H				
ad Fitzgerald			AAD ES	1												
de/dme requeded	100	Date\time received	16 10:00													
3-Oct-16		- 18 10	16 (0.00													
genthre: Signature: Si																

Primary Laboratory: Envirolab
Laboratory Quote Ret: 16078SA
Secondary Laboratory: ALS
Laboratory Quote Reb
Turnaround Required
Standard

	SAME	PLE DETAILS						CHEA	MCALT	ESTING	REQUI	RED				
Date Sampled	Sample ID	Sample Mahix	Additional information / Comments	VEPM HIL Screen	NEPM EIL Screen	Heavy Metals (12)	Hd	OCP, OPP	Herbicides	кн, втех, ран	Viltaie, nitrite, ammonia, phosphorus	sulphate, chloride	SPOCAS	emilicides		
13.10.2016	22. BH6-01	Soll		1		-	1		-	_	1	-5	S	<u> </u>		
13.10.2016	23 BH6-02	Soil														
13.10.2016	2CL BH6-03	Soil														
13.10.2016	25 BH6-04	lio2														
13.10.2016	26 8H7-01	lio2				1				1						
13.10.2016	27 вн7-02	Soil														Г
13.10.2016	28 вн7-03	Soil														Г
13.10.2016	29 BH8-01	Soil		1			1				1		1 3			
13.10.2016	30 BH8-02	Soil				1	1	1			1					Г
13.10.2016	3/ BH8-03	Soil														Γ
13.10.2016	32 BH8-04	lio2	- / II - / II - / II									i				
13.10.2016	33 BH8-05	Soil														Г
13.10.2016	34 BH8-06	Sail														Г
13.10.2016	35° BH8-07	Soil														Γ
12.10.2016	36 BH9-01	Soil				1	1	1	1		1					
12.10.2016	37 BH9-02	Soil								Ş	18					Г
12.10.2016	38 BH9-03	Soil				1	1					1				
12.10.2016	39 вня-04	Soil														
12.10.2016	40 BH9-05	Soll														
12.10.2016	41 BH10-01	Soil				1		1		1		1				
12.10.2016	42 BH10-02	lio2														
12.10.2016	43 BH10-03	Soil	-													
LBW ep A	AUTHORISATION	_	BORATORY RECEIPT	2	0	5	5	3	1	2	4	2	0	0	0	0
uested by: ad Filzgerald		Recuired by:	N. SAAD					A	diffon	al Com	iments	121/1			ASH TO	
e/lime requested:	TWI	Date\time received	Lie													
-Oct-16		17+18	17+18/10/16 10:00													
Janahee: Janahee: and Filtzgerald																

Project Title: Smith Bay Baseline Assessment	
Job Number: 150738-01	Primary Laboratory: Envirolab
Project Manager: Brad Fitzgerald	Laboratory Quote Ret 16078SA
Email: brad.frizgerakk@lbwep.com.au	
Phone: 08 8331 2417	Secondary Laboratory: ALS
Results to: results@lb:venvironment.com.au	Laboratory Quote Ref:
Invoice to: gamin@lbw.en-ironment.com.au	
LBW ep's COC REFERENCE (compile dalivery group)	Tumatound Required
150738-01 LTO-02	Standard

	SAMPLE	DETAILS				_		CHEA	IICAL T	ESTING	REQUI	RED				
Date Sampled	Sample ID	Sample Matrix	Additional information / Comments	IEPM HIL Screen	JEPM BIL Screen	Heavy Metals (12)	н	OCP, OPP	ierbicides	RH, BTEX, PAH	ilitate, nihite, ammonia, phosphorus	Sulphate, chloride	SPOCAS	ernilicides		
13.10.2016	44 BH10-04	Soil						Ť					-			
13.10.2016	\$5 BH11-01	Soil				1	1									
13.10.2016	€6 BH11-02	Soil														
13.10.2016	€7 BH11-03	Soil			1	1						1				
13.10.2016	€ BH11-04	Soil														
13.10.2016	(9 BH12-01	Soil				1		1	1		1					
13.10.2016	SD BH12-02	Soil											1			
13.10.2016	S/ 8H12-03	Soil														
13.10.2016	S2 8H12-04	Soil														Г
13.10.2016	S3 8H13-01	Soil		-		1	1				3733					
13.10.2016	S4 BH13-02	Soil														
13.10.2016	вн13-03	Soil	*Not received													Г
13.10.2016	SS" BH13-04	Soil			-71					T.		1				
13.10.2016	S6 8H13-05	Soil					- 2						1			
12.10.2016	S7 BH13-06	Soil														
12.10.2016	S8 8H14-01	Soil				1	1									
12.10.2016	S9 BH14-02	Soil							_							
12.10.2016	60 BH14-03	Soil														
12.10.2016	61 BH15-01	Soil				1	1				1					
12.10.2016	62 BH15-02	Soil														
12.10.2016	63 BH15-03	Soil				- 0										
12.10.2016	6€ BH16-01	lio2				ī	1			1						
LBW ep /	AUTHORISATION	U	ABORATORY RECEIPT	0	1	7	5	1	1:	2	2	2	1	0	0	0
peried by:		Received by:		dh.				A	ddHlon	al Con	wne nts	i.				
ad Fitzgerald		-														
e/fine requested		Date\time receive	dt.													
-Oct-16		Signature:														
nature:		- Spranser														
d Fitzgerald																

Project Title	: Smith Bay Baseline Assessment		
Job Number	: 150738-01	Primary Laboratory: Envirolab	
Project Manager	: Brad Fitzgerald	Laboratory Quote Ret 16078SA	
Email	brad.fitzgerald@lbwep.com.au		
Phone	: 08 8331 2417	Secondary Laboratory: ALS	
Results to:	results@lbwen-ironment.com.au	Laboratory Quote Ref:	
invoice to	gdmin@lbwenvironment.com.au		
	LBW ep's COC REFERENCE (sample delivery group)	Turnground Required	
	150738-01 LTO-02	Standard	

	MAZ	PLE DETAILS		F			-	CHE	MICAL 1	TESTING	REQUI	RED					
Date Sampled	Sample ID	Sample Mahtx	Additional Information / Comments	IEPM HIL Screen	EPM BI Screen	leavy Metals (12)	H	OCP, OPP	lerbicides	RH, BTEX, PAH	ilitale, nitrile, ammonia, phosphorus	sulphate, chloride	SPOCAS	emilicides			
13.10.2016	65 BH16-02	Soil		1		-	-	-0	I	-	-	- 27	7		per	cli	ent request
13.10.2016	66 BH16-03	lio2										•		100	1		14-5
13.10.2016	67 BH17-01	Soil		1							1						1810/11
13.10.2016	68 BH17-02	lio2	-														
13.10.2016	69 BH17-03	Soil		1		\vdash											
13.10.2016	70 BH17-04	Soil															
13.10.2016	71 BH17-05	Soil		t^-													
13.10.2016	72 BH18-01	Soil				1		1		1	1	1					
13.10.2016	73 BH18-02	Soil	additional bag														
13.10.2016	74 BH18-03	Soll															
13.10.2016	75 BH18-04	lio2															
13.10.2016	BH18-05	Soil	Please forward to A	LS for	testing	1		1	1	1		1					
13.10.2016	光 8H19-01	Soil				1			1		1						
13.10.2016	7-7 BH19-02	Soil		\vdash													
12.10.2016	78 BH19-03	Soil		\vdash													
12.10.2016	7G BH19-04	Soil															
12.10.2016	80 BH20-01	lio2	100			1	1	1	1'								
12.10.2016	81 BH20-02	Soil											1				
12.10.2016	82 BH20-03	lio2															8
12.10.2016	87 BH20-04	Soil	additional bag		1	1											
13.10.2016	84 11-01	Soil				1		1		1				1			
13.10.2016	85 11-02	Soil				1		1		1				1			
LBW ep	AUTHORISATION	LA	BORATORY RECEIPT	1	1	7	1	5	3	4	3	2	1	2	0	0	
pureled by: ad Fitzgerald		Received by:						A	ddlffor	al Con	nments	ij					
-Oct-16		Date\fine received															
nature: ad Fitzgerald		Ngnature:															

Project Title	: Smith Bay Baseline Assessment	
Job Number	150738-01	Primary Laboratory: Envirolab
Project Manager	Crad Fitzgerald	Laboratory Quote Ref: 16078SA
Email	brad.fitzgerald@lbwep.com.au	
Phone	08 8331 2417	Secondary Laboratory: ALS
Results to	results@lbwenvironment.com.au	Laboratory Quote Ref:
Invoice to	admin@lbwenvironment.com.au	
	LBW ep's COC REFERENCE (sample delivery group)	Turnaround Required
	150738-01 LTO-02	Standard

	SAM	PLE DETAILS						CHEA	MCAL T	ESTING	REQUI	RED	_	_		_
Date Sampled	Sample ID	Sample Mahix	Additional information / Comments	VEPM HIL Scraen	NEPM EIL Screen	feavy Metals (12)	ä	OCP, OPP	ierbicides	RH, BTEX, PAH	Whate, nihite, ammonla, phosphorus	ulphate, chloride	POCAS	emilicides		
13.10.2016	86 T1-03	Soil			-			_	-				-			
13.10.2016	93 - T1-04	Soil														
13.10.2016	8 T1-05	Sail														
13.10.2016	89 12-01	Soil		1							1					
13.10.2016	90 T2-02	Soil														
13.10.2016	91 12-03	Soil														
13.10.2016	92 12-04	Soll														
13.10.2016	93 12-05	Soil														
13.10.2016	94 13-01	Soil														
13.10.2016	95 73-02	Soil														
13.10.2016	96 13-03	Şoil														
13.10.2016	97 T3-04	Soil				1				1	1					
13.10.2016	98 74-01	Soil				1		1		1				1		
13.10.2016	99 T4-02	Soil														
13.10.2016	(40 T4-03	Soil													1 33	
13.10.2016	[O] T4-04	\$oil														_
13.10.2016	(02 T4-05	Soil	additional bag													
13.10.2016	103 15-01	Soil				1		1		1						
13.10.2016	(OL) 15-02	Soil														
13.10.2016	105 75-03	Soil														
13.10.2016	106 T5-04	\$oil				- 70										_
13.10.2016	107 16-01	Soll				1		1		1	1					
LBW ep A	AUTHORISATION	LAI	BORATORY RECEIPT	1	0	4	0	3	0	4	3	0	0	. 1.	0	0
uewled by: and Fitzgerald		Received by:						A	dition	al Com	ments					
te\fime tequested:		Date\lime received	1													
-Oct-16																
valure;		Signature:	-													
d Fitzgerald																

Project Title :	Smith Bay Baseline /:ssessment		
Job Number :	150738-01	Primary Laboratory: Envirolab	
Project Manager.	Brad Fitzgerald	Laboratory Quate Rel: 16078SA	
Email:	brad.fitzgersid@lbwsp.com.au	· · · · · · · · · · · · · · · · · · ·	
Phone:	08 8331 2417	Secondary Laboratory: ALS	
Results to:	results@lbwenvironment.com.au	Laboratory Quate Ret:	
Invoice to:	admin@lbwen_ironment.com.au		
1	LBW ep's COC REFERENCE (somple delivery group)	Turnatound Required	
	150738-01 LTO-02	Standard	

F		SAMPL	E DETAIL\$				Т		CHE	WICAL	ESTING	REQU	IRED				_
	Date Sampled	Sample ID	Sample Mahix	Additional Information / Comments													
					Metals 8												
	12.10.2016	R1	Water		1												
F	13.10.2016	R2	Water		1				- 0								
F	12/10/16	BH10-05	-extra	sample.	-							-					
L		55															
F			-					-	_	-		-	-			_	-
L																	
F																_	-
H																	
F								-									
H																	
F															_		
F													-				-
F			1		-								_				
L																	
H													_			_	
1	LBW ep Al	THORISATION	LA	BORATORY RECEIPT	2	0	0	0	0	0	0	0	D	0	0	0	
1	quested by: ad Fitzgerald		Received by:	,					A	ddittor	al Cor	mment	5	_oun			
De	fe\free requested: 3-Oct-16		Date\Time received	•													
_	purlare:	-/	Signature:														
an	ad Fitzgerald																

CERTIFICATE OF ANALYSIS

Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Contact : MR BRAD FITZGERALD
Address : 184 MAGILL ROAD

: 184 MAGILL ROAD NORWOOD SA, AUSTRALIA 5067

Telephone : +61 08 8331 2417

Project : 150738-01

Order number : ----

C-O-C number : 150738-01 LTO-02

Sampler : ----

Site : Smith Bay Baseline Assessment

Quote number : ---No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 8

Laboratory : Environmental Division Melbourne

Contact : KIEREN BURNS

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600
Date Samples Received : 19-Oct-2016 17:45

Date Analysis Commenced : 20-Oct-2016

Issue Date : 27-Oct-2016 15:27

Accreditation No. 825
Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC
Lana Nguyen Senior LCMS Chemist Sydney Organics, Smithfield, NSW
Nikki Stepniewski Senior Inorganic Instrument Chemist Melbourne Inorganics, Springvale, VIC
Xing Lin Senior Organic Chemist Melbourne Organics, Springvale, VIC

Page : 2 of 8
Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ED045G: The presence of thiocyanate can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/kg and 1.2mg/kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 8 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

Page : 4 of 8 : EM1612432 Work Order

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project 150738-01

Analytical Results

Prothiofos

Carbophenothion

Azinphos Methyl

Acenaphthylene

Naphthalene

EP075(SIM)B: Polynuclear Aromatic Hydrocarbons

Ethion

< 0.05

< 0.05

< 0.05

< 0.05

< 0.5

< 0.5

34643-46-4

563-12-2

786-19-6

86-50-0

91-20-3

208-96-8

0.05

0.05

0.05

0.05

0.5

0.5

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Page : 5 of 8
Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

Page : 6 of 8 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH18-05		1 0		(4576)
	Cli	ent sampli	ng date / time	[13-Oct-2016]		(1222		
Compound	CAS Number	LOR	Unit	EM1612432-001			*******	
and a sind Breather, do not see				Result				
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		122		
Toluene	108-88-3	0.5	mg/kg	<0.5				
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	*****		****	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5				
^ Sum of BTEX		0.2	mg/kg	<0.2	######			·
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5				
Naphthalene	91-20-3	1	mg/kg	<1				
EP202A: Phenoxyacetic Acid Her	bicides by LCMS							
4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02				
2.4-DB	94-82-6	0.02	mg/kg	<0.02	, 222 2.		. 	1.0000
Dicamba	1918-00-9	0.02	mg/kg	<0.02				100000
Mecoprop	93-65-2	0.02	mg/kg	<0.02	(2002)			
MCPA	94-74-6	0.02	mg/kg	<0.02	(1111 .)			
2.4-DP	120-36-5	0.02	mg/kg	<0.02		12.00		
2.4-D	94-75-7	0.02	mg/kg	<0.02	2220			
Triclopyr	55335-06-3	0.02	mg/kg	<0.02				
2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02				
2.4.5-T	93-76-5	0.02	mg/kg	<0.02				
МСРВ	94-81-5	0.02	mg/kg	<0.02				
Picloram	1918-02-1	0.02	mg/kg	<0.02				
Clopyralid	1702-17-6	0.02	mg/kg	<0.02				
Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02				
EP068S: Organochlorine Pesticid	e Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	102				
EP068T: Organophosphorus Pest	ticide Surrogate							
DEF	78-48-8	0.05	%	79.6				
EP075(SIM)S: Phenolic Compoun	The second secon							
Phenol-d6	13127-88-3	0.5	%	99.3		<u></u>		
2-Chlorophenol-D4	93951-73-6	0.5	%	100				
2.4.6-Tribromophenol	118-79-6	0.5	%	77.3	, ;			
EP075(SIM)T: PAH Surrogates	1,10-70-0	11111				A-4-0	7940	
2-Fluorobiphenyl	321-60-8	0.5	%	113	<u> </u>	<u> </u>	200	7 <u></u>
Anthracene-d10	1719-06-8	0.5	%	108				

Page Work Order : 7 of 8 : EM1612432

: L.B.W. ENVIRONMENTAL PROJECTS : 150738-01 Client

Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	BH18-05	 -	- -		. -
	Clie	ent samplin	ng date / time	[13-Oct-2016]	(<u>1444)</u> :	(4444		(1404)
Compound	CAS Number	LOR	Unit	EM1612432-001				*******
				Result		-	-	
EP075(SIM)T: PAH Surrogates - Conti	nued							
4-Terphenyl-d14	1718-51-0	0.5	%	116				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	68.0				-
Toluene-D8	2037-26-5	0.2	%	99.3				:.
4-Bromofluorobenzene	460-00-4	0.2	%	88.5			200	
EP202S: Phenoxyacetic Acid Herbici	de Surrogate							
2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.02	%	105				

Page : 8 of 8 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Sur	rogate		
Dibromo-DDE	21655-73-2	38	128
EP068T: Organophosphorus Pesticide	Surrogate		
DEF	78-48-8	33	139
EP075(SIM)S: Phenolic Compound Sur	rogates		
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124
EP202S: Phenoxyacetic Acid Herbicide	Surrogate		
2.4-Dichlorophenyl Acetic Acid	19719-28-9	45	139

QUALITY CONTROL REPORT

Work Order : EM1612432

: L.B.W. ENVIRONMENTAL PROJECTS

Contact : MR BRAD FITZGERALD

Address : 184 MAGILL ROAD

NORWOOD SA, AUSTRALIA 5067

Telephone : +61 08 8331 2417

Project : 150738-01

Order number : ----

Client

C-O-C number : 150738-01 LTO-02

Sampler : ---

Site : Smith Bay Baseline Assessment

Quote number : ---
No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 10

Laboratory : Environmental Division Melbourne

Contact : KIEREN BURNS

Address : 4 Westall Rd Springvale VIC Australia 3171

 Telephone
 : +61-3-8549 9600

 Date Samples Received
 : 19-Oct-2016

 Date Analysis Commenced
 : 20-Oct-2016

 Issue Date
 : 27-Oct-2016

IAC-MRA

NATA
Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC
Lana Nguyen Senior LCMS Chemist Sydney Organics, Smithfield, NSW
Nikki Stepniewski Senior Inorganic Instrument Chemist Melbourne Inorganics, Springvale, VIC
Xing Lin Senior Organic Chemist Melbourne Organics, Springvale, VIC

Page : 2 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory i	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	intent (QC Lot: 624542)								
EM1612426-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	29.1	28.8	0.956	0% - 20%
EM1612440-002	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	11.1	10.9	1.95	0% - 50%
ED040N: Sulfate - C	alcium Phosphate Solu	ble (NEPM) (QC Lot: 629461)							
EM1612432-001	BH18-05	ED040N: Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	<50	0.00	No Limit
ED045G: Chloride b	y Discrete Analyser (Q	C Lot: 630503)							
EM1612405-004	Anonymous	ED045G: Chloride	16887-00-6	10	mg/kg	440	440	0.00	0% - 20%
EG005T: Total Meta	Is by ICP-AES (QC Lot:	628635)							
EM1612227-002	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	12	14	12.6	No Limit
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	4	4	0.00	No Limit
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	20	8	91.6	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	9	10	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	11	11	0.00	No Limit
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	9	10	0.00	No Limit
EM1612432-001	BH18-05	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	16	16	0.00	No Limit
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	4	4	0.00	No Limit
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit

Page : 3 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	ű	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
G005T: Total Metal	s by ICP-AES (QC Lot	: 628635) - continued							
EM1612432-001	BH18-05	EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	6	6	0.00	No Limit
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	6	6	0.00	No Limit
G035T: Total Reco	overable Mercury by FI	MS (QC Lot: 628634)							
M1612227-002	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EM1612432-001	BH18-05	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
P068A: Organochi	orine Pesticides (OC)						No.	454036010	17
M1612432-001	BH18-05	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
0 12702 00 1	5000	EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: hexachlorobenzene (HCB)	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
			1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	60-57-1	0.05		<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4'-DDE	72-35-9		mg/kg		<0.05	0.00	No Limit
		EP068: Endrin	33213-65-9	0.05	mg/kg	<0.05 <0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4'-DDD			mg/kg			18777-1	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	201.1711112
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4'-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2 <0.2	0.00	No Limit No Limit
Market III	W 124 11 11 12 12	EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	NO LIMIT
	osphorus Pesticides (C	P) (QC Lot: 627274)						CONTRACTOR DO	
M1612432-001	BH18-05	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page : 4 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		1
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP068B: Organopho	osphorus Pesticides (O	P) (QC Lot: 627274) - continued							
EM1612432-001	BH18-05	EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
P075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 627273)							
EM1612432-001	BH18-05	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	1,1000,600,000,600,600	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		Er oro(omi), bonzo(o j)ndorantiono	205-82-3						0.000.0000
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
P080/071: Total Pe	troleum Hydrocarbons								2,00000,000,000
EM1612426-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	46	35	27.6	No Limit
WATER CONTRACTOR OF THE PARTY O	troleum Hydrocarbons							2.13	THE CHILL
M1612432-001	BH18-05	Processing and a second control of the secon		400		-400	-400	0.00	N - 1 !!
EM1612432-001	BH18-05	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction	7775	100	mg/kg	<100 <50	<100		No Limit
		EP071: C10 - C14 Fraction		50	mg/kg		<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
		ns - NEPM 2013 Fractions (QC Lot: 624154)				-		100 to 200 to 1	
EM1612426-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	61	44	31.6	No Limit
P080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 627272)							
EM1612432-001	BH18-05	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit

Page : 5 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method; Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 627272) - con	tinued						
EM1612432-001	BH18-05	EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)	240	50	mg/kg	<50	<50	0.00	No Limit
P080: BTEXN (QC	Lot: 624154)								
EM1612426-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	0.5	0.5	0.00	No Limit
	20	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	2.0	1.5	25.9	No Limit
	EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	8.8	6.9	24.4	0% - 50%	
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	1.7	1.3	27.4	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
EP202A: Phenoxya	cetic Acid Herbicides b	y LCMS (QC Lot: 626976)							
EM1612432-001	BH18-05	EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit

Page : 6 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

ALS

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory control. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED040N: Sulfate - Calcium Phosphate Soluble (NEPM)	(QCLot: 629461)								
ED040N: Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	3000 mg/kg	101	86	110	
ED045G: Chloride by Discrete Analyser (QCLot: 63050	3)								
ED045G: Chloride	16887-00-6	10	mg/kg	<10	50 mg/kg	106	93	111	
			28 28	<10	5000 mg/kg	104	93	111	
EG005T: Total Metals by ICP-AES (QCLot: 628635)									
G005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	103	79	113	
G005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	97.8	85	109	
G005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	99.5	89	113	
G005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	95.7	84	116	
G005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	97.5	85	107	
G005T: Molybdenum	7439-98-7	2	mg/kg	<2	7.9 mg/kg	99.9	86	112	
G005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	100	89	111	
G005T: Selenium	7782-49-2	5	mg/kg	<5	5.37 mg/kg	101	93	109	
G005T: Silver	7440-22-4	2	mg/kg	<2	2.1 mg/kg	103	80	108	
G005T: Tin	7440-31-5	5	mg/kg	<5	5.2 mg/kg	99.2	92	114	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	99.0	89	111	
EG035T: Total Recoverable Mercury by FIMS (QCLot:	628634)								
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	87.6	85	103	
EP068A: Organochlorine Pesticides (OC) (QCLot: 627)	274)								
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	74.6	45	131	
P068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	80.0	45	125	
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	80.5	46	134	
P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	79.0	49	133	
P068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	77.9	52	128	
P068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	72.7	48	128	
P068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	81.4	52	128	
P068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	78.8	52	130	
P068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	81.9	51	131	
P068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.3	57	135	
P068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	81.6	51	131	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	72.7	51	131	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	82.1	51	131	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	73.2	41	131	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	82.1	52	132	

Page : 7 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
0.000 (1900 PD00 PD00 CD00 CD				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCLot: 62727	4) - continued								
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	104	50	134	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	77.2	49	130	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	78.3	50	132	
EP068: 4.4'-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	68.5	38	140	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	80.1	64	132	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	61.7	41	141	
EP068B: Organophosphorus Pesticides (OP) (QCLot: 62	7274)								
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	83.2	54	135	
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.3	51	143	
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	72.2	10	136	
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	82.3	43	128	
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	82.5	53	131	
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	80.1	53	131	
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	79.7	51	133	
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	80.4	51	130	
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	86.2	54	130	
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	73.3	51	135	
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	78.9	49	133	
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	78.1	50	134	
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	78.9	53	131	
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	75.7	46	134	
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	80.6	51	133	
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	79.8	51	133	
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	81.6	51	133	
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	50.1	14	124	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 627273)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	105	80	121	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	105	70	130	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	103	80	120	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	112	70	124	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	104	80	122	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	108	80	126	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	117	70	128	
P075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	115	80	125	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	97.4	70	130	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	102	80	126	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	3 mg/kg	97.0	70	124	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	97.1	75	12	

Page : 8 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
populario de desprisación de la colonia de		2000		Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot:	627273) - cont	inued							
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	86.0	65	125	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	96.3	65	128	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	96.2	65	126	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	94.5	65	127	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 624154)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	104	70	127	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 627272)									
P071: C10 - C14 Fraction		50	mg/kg	<50	751 mg/kg	98.9	65	131	
EP071: C15 - C28 Fraction		100	mg/kg	<100	3103 mg/kg	99.6	70	126	
P071: C29 - C36 Fraction		100	mg/kg	<100	1482 mg/kg	105	70	122	
P071: C10 - C36 Fraction (sum)		50	mg/kg	<50					
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 F	ractions (QCL	ot: 624154)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	98.4	68	125	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 F	ractions (QCL)	ot: 627272)							
P071: >C10 - C16 Fraction		50	mg/kg	<50	1135 mg/kg	99.0	68	130	
P071: >C16 - C34 Fraction		100	mg/kg	<100	4080 mg/kg	96.3	72	116	
P071: >C34 - C40 Fraction		100	mg/kg	<100	162 mg/kg	108	38	132	
P071: >C10 - C40 Fraction (sum)		50	mg/kg	<50		<u> </u>	7242		
EP080: BTEXN (QCLot: 624154)									
P080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	109	74	124	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	112	77	125	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	99.0	73	125	
P080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	101	77	128	
	106-42-3			9000		980		2650	
P080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	105	81	128	
P080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	110	66	130	
P202A: Phenoxyacetic Acid Herbicides by LCMS (QCLot:	626976)								
P202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	0.1 mg/kg	102	54	128	
EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	0.1 mg/kg	107	46	130	
EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	0.1 mg/kg	102	52	135	
EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	0.1 mg/kg	89.5	60	130	
P202: MCPA	94-74-6	0.02	mg/kg	<0.02	0.1 mg/kg	107	57	131	
P202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	0.1 mg/kg	86.1	50	141	
P202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	0.1 mg/kg	99.6	69	131	
P202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	0.1 mg/kg	102	51	141	
EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	0.1 mg/kg	93.1	41	126	
EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	0.1 mg/kg	113	57	139	
EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	0.1 mg/kg	94.3	39	137	

Page : 9 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

Sub-Matrix: SOIL	o-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
MASS 1998-PD (ASSAC)			Report	Spike	Spike Recovery (%)	Recovery Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP202A: Phenoxyacetic Acid Herbicides by LCMS (Q	CLot: 626976) - contir	nued								
EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	0.1 mg/kg	105	49	129		
EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	0.1 mg/kg	101	49	106		
EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	0.1 mg/kg	106	53	128		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL	-Matrix: SOIL		м	latrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
D045G: Chloride	by Discrete Analyser (QCLot: 630503)						
EM1612405-005	Anonymous	ED045G: Chloride	16887-00-6	2000 mg/kg	119	93	125
G005T: Total Me	etals by ICP-AES (QCLot: 628635)						
EM1612227-005	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	116	78	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	107	84	116
		EG005T: Chromium	7440-47-3	50 mg/kg	106	79	121
		EG005T: Copper	7440-50-8	50 mg/kg	103	82	124
		EG005T: Lead	7439-92-1	50 mg/kg	98.7	76	124
		EG005T: Molybdenum	7439-98-7	50 mg/kg	81.3	79	117
		EG005T: Nickel	7440-02-0	50 mg/kg	103	78	120
		EG005T: Selenium	7782-49-2	50 mg/kg	88.2	71	125
		EG005T: Zinc	7440-66-6	50 mg/kg	101	74	128
EG035T: Total Re	ecoverable Mercury by FIMS (QCLot: 628634)						
EM1612227-005	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	84.2	76	116
EP068A: Organoc	chlorine Pesticides (OC) (QCLot: 627274)						
EM1612535-010	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	63.8	22	139
		EP068: Heptachlor	76-44-8	0.5 mg/kg	56.0	18	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	93.1	23	136
		EP068: Dieldrin	60-57-1	0.5 mg/kg	90.6	42	136
		EP068: Endrin	72-20-8	0.5 mg/kg	67.9	23	146
		EP068: 4.4'-DDT	50-29-3	0.5 mg/kg	20.2	20	133
EP068B: Organop	phosphorus Pesticides (OP) (QCLot: 627274)						
EM1612535-010	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	89.2	49	135
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	72.5	41	127
			23505-41-1	0.5 mg/kg	80.6	47	133
		EP068: Pirimphos-ethyl	20000-41-1	0.0gg			
		EP068: Pirimphos-ethyl EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	83.4	45	133

Page : 10 of 10 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Sub-Matrix: SOIL				М	latrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP075(SIM)B: Pol	ynuclear Aromatic Hydrocarbons (QCLot:	627273)					
EM1612535-007	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	105	67	117
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	117	52	148
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 624154)						
EM1612426-002	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	99.8	42	131
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 627272)	Approximation and the second s					
EM1612535-001	Anonymous	EP071: C10 - C14 Fraction	-	751 mg/kg	101	53	123
	Provide British Cost	EP071: C15 - C28 Fraction	######################################	3103 mg/kg	100	70	124
		EP071: C29 - C36 Fraction	<u></u> -	1482 mg/kg	106	64	118
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fr	ractions (QCLot: 624154)					
EM1612426-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	90.7	39	129
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fr	ractions (QCLot: 627272)					ů.
EM1612535-001	Anonymous	EP071: >C10 - C16 Fraction		1135 mg/kg	100	65	123
	F	EP071: >C16 - C34 Fraction	222	4080 mg/kg	97.4	67	121
		EP071: >C34 - C40 Fraction	****	162 mg/kg	112	44	126
EP080: BTEXN (G	CLot: 624154)						
EM1612426-002	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	117	50	136
		EP080: Toluene	108-88-3	2 mg/kg	119	56	139
EP202A: Phenoxy	acetic Acid Herbicides by LCMS (QCLot: 6	26976)					
EM1612432-001	BH18-05	EP202: Mecoprop	93-65-2	0.1 mg/kg	100	60	140
		EP202: MCPA	94-74-6	0.1 mg/kg	94.7	57	143
		EP202: 2.4-D	94-75-7	0.1 mg/kg	92.6	68	139
		EP202: Triclopyr	55335-06-3	0.1 mg/kg	113	51	145
		EP202: 2.4.5-T	93-76-5	0.1 mg/kg	96.6	57	142
		EP202: Picloram	1918-02-1	0.1 mg/kg	107	49	138
		EP202: Clopyralid	1702-17-6	0.1 mg/kg	93.3	49	149

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM1612432** Page : 1 of 7

Client : L.B.W. ENVIRONMENTAL PROJECTS Laboratory : Environmental Division Melbourne

 Contact
 :MR BRAD FITZGERALD
 Telephone
 :+61-3-8549 9600

 Project
 :150738-01
 Date Samples Received
 :19-Oct-2016

Site : Smith Bay Baseline Assessment | Issue Date : 27-Oct-2016

Sampler :--- No. of samples received :1
Order number :--- No. of samples analysed :1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 7
Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

Outliers: Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type		Count	Rat	e (%)	Quality Control Specification	
Method	QC	Regular	Actual	Expected		
Matrix Spikes (MS)						
Sulfate - Calcium Phosphate Soluble	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard	

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL	Evaluation: * = Holding time breach: * = Within holding time.

Matrix: SOIL				Evaluation	: * = Holding time	breach; = vvitni	n notaing tin
Method	Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103) BH18-05	13-Oct-2016	2	1242		20-Oct-2016	27-Oct-2016	1
ED040N: Sulfate - Calcium Phosphate Soluble (NEPM)							
Soil Glass Jar - Unpreserved (ED040N) BH18-05	13-Oct-2016	25-Oct-2016	11-Apr-2017	1	26-Oct-2016	11-Apr-2017	1
ED045G: Chloride by Discrete Analyser							
Soil Glass Jar - Unpreserved (ED045G) BH18-05	13-Oct-2016	26-Oct-2016	10-Nov-2016	1	27-Oct-2016	23-Nov-2016	1
EG005T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) BH18-05	13-Oct-2016	25-Oct-2016	11-Apr-2017	1	25-Oct-2016	11-Apr-2017	1
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) BH18-05	13-Oct-2016	25-Oct-2016	10-Nov-2016	1	25-Oct-2016	10-Nov-2016	1
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068) BH18-05	13-Oct-2016	24-Oct-2016	27-Oct-2016	1	24-Oct-2016	03-Dec-2016	1
EP068B: Organophosphorus Pesticides (OP)							
Soil Glass Jar - Unpreserved (EP068) BH18-05	13-Oct-2016	24-Oct-2016	27-Oct-2016	1	24-Oct-2016	03-Dec-2016	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) BH18-05	13-Oct-2016	24-Oct-2016	27-Oct-2016	1	24-Oct-2016	03-Dec-2016	1

Page : 3 of 7 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Matrix: SOIL				Evaluation	n: × = Holding time	breach; ✓ = Withi	n holding tim
Method	Sample Date	E	xtraction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) BH18-05	13-Oct-2016	20-Oct-2016	27-Oct-2016	1	21-Oct-2016	27-Oct-2016	1
Soil Glass Jar - Unpreserved (EP071) BH18-05	13-Oct-2016	24-Oct-2016	27-Oct-2016	1	24-Oct-2016	03-Dec-2016	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) BH18-05	13-Oct-2016	20-Oct-2016	27-Oct-2016	1	21-Oct-2016	27-Oct-2016	1
Soil Glass Jar - Unpreserved (EP071) BH18-05	13-Oct-2016	24-Oct-2016	27-Oct-2016	1	24-Oct-2016	03-Dec-2016	1
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BH18-05	13-Oct-2016	20-Oct-2016	27-Oct-2016	1	21-Oct-2016	27-Oct-2016	1
EP202A: Phenoxyacetic Acid Herbicides by LCMS							
Soil Glass Jar - Unpreserved (EP202) BH18-05	13-Oct-2016	25-Oct-2016	27-Oct-2016	1	25-Oct-2016	04-Dec-2016	1

Page : 4 of 7
Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type			ount		Rate (%)	not within specification; \checkmark = Quality Control frequency within specification	
Analytical Methods	Method	OC C	Regular	Actual	Expected	Evaluation	Quanty Control Specification
Laboratory Duplicates (DUP)			110000	7101447	EADOUGH		
Chloride Soluble By Discrete Analyser	ED045G	1	3	33.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055-103	2	16	12.50	10.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenois (SIM)	EP075(SIM)	1	10	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	2	50.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate - Calcium Phosphate Soluble	ED040N	1	1	100.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	9	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chloride Soluble By Discrete Analyser	ED045G	2	3	66.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenois (SIM)	EP075(SIM)	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate - Calcium Phosphate Soluble	ED040N	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride Soluble By Discrete Analyser	ED045G	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate - Calcium Phosphate Soluble	ED040N	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride Soluble By Discrete Analyser	ED045G	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate - Calcium Phosphate Soluble	ED040N	0	1	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 7 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Matrix: SOIL Quality Control Sample Type		-	2002	_ raidate			not within specification; ✓ = Quality Control frequency within specification	
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS) - Continued								
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Page : 6 of 7

Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Project : 150738-01

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

nalytical Methods Method Matr		Matrix	Method Descriptions					
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).					
Sulfate - Calcium Phosphate Soluble	ED040N	SOIL	In house: The sample is extracted with a calcium phosphate solution. The phosphate ion displaces the adsorbed sulfate while calcium ions depress the extraction of interfering S from soil organic matter. SO4 in the extract is determined by ICPAES and reported as dry weight in the original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 406)					
Chloride Soluble By Discrete Analyser	ED045G	SOIL	In house: Referenced to APHA 4500-CI- E. The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm. Analysis is performed on a 1:5 soil / water leachate.					
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)					
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)					
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)					
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.					
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)					
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.					
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	SOIL	In house: LCMS (Electrospray in negative mode). Residues of acid herbicides are extracted from soil samples under the alkaline condition. An aliquot of the alkaline aqueous phase is taken and acidified before a SPE cleanup. After eluting off from the SPE cartridge, residues of acid herbicides are dissolved in HPLC mobile phase prior to instrument analysis.					
Preparation Methods	Method	Matrix	Method Descriptions					

Page : 7 of 7 Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS

Preparation Methods	Method	Matrix	Method Descriptions				
Calcium Phosphate Extraction for ED040NPR SOIL Sulphate as SO4 2-		SOIL	The sample is extracted with a calcium phosphate solution. The phosphate ion displaces the adsorbed sulphate while calcium ions depress the extraction of interfering S from soil organic matter. SO4 in the extract is determined by ICPAES and reported as dry weight in the original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 406)				
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.				
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)				
Extraction for Phenoxy Acid Herbicides in Soils.	EP202-PR	SOIL	In-House: Alkaline extract followed by SPE clean up of acidified portion of the sample extract.				
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.				
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.				

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM1612432

Client : L.B.W. ENVIRONMENTAL PROJECTS Laboratory : Environmental Division Melbourne

Contact : MR BRAD FITZGERALD Contact : KIEREN BURNS

Address Address : 184 MAGILL ROAD : 4 Westall Rd Springvale VIC Australia NORWOOD SA, AUSTRALIA 5067

3171

E-mail : brad.fitzgerald@lbwep.com.au E-mail

Telephone : +61 08 8331 2417 Telephone : +61-3-8549 9600 Facsimile : +61 08 8331 2415 Facsimile : +61-3-8549 9601

Project : 150738-01 Page : 1 of 2

Order number Quote number : EM2015LBWENV0001 (ADBQ/001/15) : 150738-01 LTO-02 QC Level C-O-C number : NEPM 2013 B3 & ALS QC Standard

: Smith Bay Baseline Assessment

Sampler

Dates

Date Samples Received : 19-Oct-2016 5:45 PM Issue Date : 20-Oct-2016 Scheduled Reporting Date : 28-Oct-2016 Client Requested Due 28-Oct-2016

Delivery Details

Mode of Delivery : Carrier Security Seal : Not Available

No. of coolers/boxes Temperature : 1 : 14.7°C - Ice Bricks present

Receipt Detail No. of samples received / analysed : 1/1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.
- Analytical work for this work order will be conducted at ALS Springvale and ALS Sydney.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.

: 20-Oct-2016 Issue Date

Page

2 of 2 EM1612432 Amendment 0 Work Order

Client : L.B.W. ENVIRONMENTAL PROJECTS

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. alcium Phosphate Extractable Sulfate If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling SOIL - ED045G (solids) Chloride Soluble by Discrete. date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component. foisture Content SOIL - ED040N Matrix: SOIL 30IL - S-12 Client sample ID Laboratory sample Client sampling date / time EM1612432-001 [13-Oct-2016] BH18-05

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

BRAD FITZGERALD

DIGID I II EGEIGIED		
- *AU Certificate of Analysis - NATA (COA)	Email	brad.fitzgerald@lbwep.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	brad.fitzgerald@lbwep.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	brad.fitzgerald@lbwep.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	brad.fitzgerald@lbwep.com.au
- A4 - AU Tax Invoice (INV)	Email	brad.fitzgerald@lbwep.com.au
- Chain of Custody (CoC) (COC)	Email	brad.fitzgerald@lbwep.com.au
- EDI Format - ENMRG (ENMRG)	Email	brad.fitzgerald@lbwep.com.au
- EDI Format - ESDAT (ESDAT)	Email	brad.fitzgerald@lbwep.com.au
- EDI Format - SRAENVT_SANTOS (SRAENVT_SANTOS)	Email	brad.fitzgerald@lbwep.com.au
NVOICES ADDRESS		
- A4 - AU Tax Invoice (INV)	Email	admin@lbwep.com.au
RESULTS		
- *AU Certificate of Analysis - NATA (COA)	Email	results@lbwep.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	results@lbwep.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	results@lbwep.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	results@lbwep.com.au
- Chain of Custody (CoC) (COC)	Email	results@lbwep.com.au
- EDI Format - ENMRG (ENMRG)	Email	results@lbwep.com.au
- EDI Format - ESDAT (ESDAT)	Email	results@lbwep.com.au
- EDI Format - SRAENVT_SANTOS (SRAENVT_SANTOS)	Email	results@lbwep.com.au

LABORATORY TESTING ORDER

Job Number: 15	0738-01	Primary Laboratory: Envirolab
ject Manager: Bro	ad Fitzgerald	Laboratory Quote Ref: 16078SA
Email: bra	ad_fitzgerald@ibwep.com.au	W
Phone: 08	8331 2417	Secondary Laboratory: ALS
CE 9030000		
Results to: res	sults@lbwenvironment.com.au	Laboratory Quote Ret:
	sults@lbwenvironment.com.au drrin@lbwenvironment.com.au	Laboratory Quote Kek
	A SHI PONDO PROPERTO DE LA PROPERTO PONTO PONTO PONTO DE LA PONTO DEL PONTO DE LA PONTO DE LA PONTO DEL PONTO DE LA PONTO DEL PONTO DE LA PONTO DE LA PONTO DE LA PONTO DE LA PONTO DEL PONTO DE LA PONTO DEL PONTO DEL PONTO DEL PONTO DEL PONTO DEL PONTO DEL PONTO DELIGIA DEL PONTO DELA PONTO DEL PONTO D	Laboratory Quote Ret Tumaround Required

	SAMP	PLE DETAILS CHEMICAL TESTING REQUIRED														
Date Sampled	Sample ID	Sample Mairix	Additional information / Comments	NEPM HIL Screen	NEPM EIL Screen	Heavy Metals (12)	Ha.	OCP, OPP	Herbicides	RH, BTEX, PAH	Nitrate, nitrite, ammonia, phosphorus	Sulphate, chloride	spocas	fermilicides		
13.10.2016	BH16-02	Soil											1			
13.10.2016	BH16-03	Soil														
13.10.2016	BH17-01	Soil		1							1					
13.10.2016	BH17-02	Soil														
13.10.2016	8H17-03	Soil														
13.10.2016	BH17-04	Soil														
13.10.2016	BH17-05	Soil														
13.10.2016	8H18-01	lio2				1		1		1	1	1				
13.10.2016	8H18-02	lio2	additional bag													
13.10.2016	BH18-03	Soil														
13.10.2016	BH18-04	Soil														
13.10.2016	BH18-05	Ho2	Please forward to A	LS for f	esting	1		1	1	1		1				
13.10.2016	8H19-01	Soil				1			1		1					
13.10.2016	BH19-02	Soil														
12.10.2016	BH19-03	Soil	- Land													
12.10.2016	BH19-04	Soil										8				
12.10.2016	BH20-01	Soil				1	1	1	1				8			
12.10.2016	BH20 02	Soil														
12.10.2016	8H20-03	Sail										- 9				
12.10.2016	BH20-04	Sol	additional bag		1	. 1										
13.10.2016	11 01	los.				1		1		1				1		
13.10.2016	T1-02	lio2				1		1		1				1		
LBW ep AUI	HORISATION	LA	BORATORY RECEIPT	1	.1	7	1	5	3	4	3	2	1	2	0	0
equested by: srad Fitzgerald		Received by:	Ton (Ab)					A	ddition	al Con						
de lame requested: 8-Oct-16		Date\time received	Tom (AW)									Mel	bou	rne	isio	n
enature: rod Fitzgerald		Signature:	2				Ş			Į	Vork	Orde 11	61	19rer 24	13	2

I:\iobs\2015\150738-01 KJPT Smith Bay- Baseline Site Assessment\COC\150738-01 LTO-02.xlsx

Relinquished: M-SAAD ELS
19/10/16.

Telephone: + 61-3-8549 9600

Appendix L

Laboratory Reports and Chain of Custody Documentation - Water

ENVIROLAB

email: melbourne@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Melbourne | ABN 37 112 535 645 - 002

CERTIFICATE OF ANALYSIS 9476

Client:

LBW Environmental Projects

184 Magill Road Norwood

SA 5067

Attention: Brad Fitzgerald

Sample log in details:

Your Reference: 150738-01 - KIPT Smith Bay Baseline Assessm.

No. of samples: 2 Waters

Date samples received / completed instructions received 17/10/2016 / 17/10/2016

This report supersedes 9476_R00 due to client request for TDS and salinity to be added.

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 26/10/16 / 23/11/16

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

Pamela Adams

Laboratory Manager

Chris De Luca

Senior Chemist

VOCs in water	10000000	239232. 9
Our Reference:	UNITS	9476-1
Your Reference		GW1
Date Sampled Type of sample		12/10/2016 Water
913 * * * * * * * * * * * * * * * * * * *		3333333
Date extracted	ä	21/10/2016
Date analysed	-	21/10/2016
Dichlorodifluoromethane	μg/L	<50
Chloromethane	μg/L	<50
Vinyl Chloride	µg/L	<50
Bromomethane	μg/L	<50
Chloroethane	μg/L	<50
Trichlorofluoromethane	μg/L	<50
1,1-Dichloroethene	μg/L	<5
Trans-1,2-dichloroethene	μg/L	<5
1,1-dichloroethane	μg/L	<5
Cis-1,2-dichloroethene	μg/L	<5
Bromochloromethane	μg/L	<5
Chloroform	μg/L	<5
2,2-dichloropropane	μg/L	<5
1,2-dichloroethane	μg/L	<5
1,1,1-trichloroethane	μg/L	<5
1,1-dichloropropene	μg/L	<5
Cyclohexane	μg/L	<5
Carbon tetrachloride	μg/L	<5
Benzene	μg/L	<5
Dibromomethane	μg/L	<5
1,2-dichloropropane	μg/L	<5
Trichloroethene	μg/L	<5
Bromodichloromethane	μg/L	<5
trans-1,3-dichloropropene	μg/L	<5
cis-1,3-dichloropropene	μg/L	<5
1,1,2-trichloroethane	μg/L	<5
Toluene	μg/L	<5
1,3-dichloropropane	μg/L	<5
Dibromochloromethane	μg/L	<5
1,2-dibromoethane	μg/L	<5
Tetrachloroethene	µg/L	<5
1,1,1,2-tetrachloroethane	μg/L	<5
Chlorobenzene	μg/L	<5
Ethylbenzene	μg/L	<5
Bromoform	µg/L	<5
m+p-xylene	µg/L	<10
Styrene	μg/L	<5
	1.5	2059

Envirolab Reference: 9476 Revision No: R 01

1,1,2,2-tetrachloroethane

<5

µg/L

VOCs in water Our Reference: Your Reference Date Sampled Type of sample	UNITS	9476-1 GW1 12/10/2016 Water
o-xylene	μg/L	<5
1,2,3-trichloropropane	μg/L	<5
Isopropylbenzene	μg/L	<5
Bromobenzene	μg/L	<5
n-propyl benzene	μg/L	<5
2-chlorotoluene	μg/L	<5
4-chlorotoluene	μg/L	<5
1,3,5-trimethyl benzene	μg/L	<5
Tert-butyl benzene	μg/L	<5
1,2,4-trimethyl benzene	μg/L	<5
1,3-dichlorobenzene	μg/L	<5
Sec-butyl benzene	μg/L	<5
1,4-dichlorobenzene	μg/L	<5
4-isopropyl toluene	μg/L	<5
1,2-dichlorobenzene	µg/L	<5
n-butyl benzene	μg/L	<5
1,2-dibromo-3-chloropropane	µg/L	<5
1,2,4-trichlorobenzene	μg/L	<5
Hexachlorobutadiene	μg/L	<5
1,2,3-trichlorobenzene	μg/L	<5
Surrogate Dibromofluoromethane	%	114
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	100

vTRH(C6-C10)/BTEXNinWater Our Reference: Your Reference Date Sampled Type of sample	UNITS	9476-1 GW1 12/10/2016 Water
Date extracted	2	21/10/2016
Date analysed	-	21/10/2016
TRHC6 - C9	μg/L	<50
TRHC6 - C10	μg/L	<50
TRHC6 - C10 less BTEX (F1)	μg/L	<50
Benzene	μg/L	<5
Toluene	μg/L	<5
Ethylbenzene	μg/L	<5
m+p-xylene	μg/L	<10
o-xylene	μg/L	<5
Naphthalene	μg/L	<5
Surrogate Dibromofluoromethane	%	116
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	99

TRHWater(C10-C40)NEPM Our Reference: Your Reference Date Sampled Type of sample	UNITS	9476-1 GW1 12/10/2016 Water	9476-2 GW2 13/10/2016 Water
Date extracted	-	18/10/2016	18/10/2016
Date analysed	-	19/10/2016	19/10/2016
TRHC10 - C14	μg/L	<50	330,000
TRHC15 - C28	μg/L	210	1,200,000
TRHC29 - C36	μg/L	120	28,000
TRH>C10 - C16	μg/L	81	710,000
TRH>C10 - C16 less Naphthalene (F2)	μg/L	81	[NT]
TRH>C16 - C34	μg/L	250	830,000
TRH>C34 - C40	μg/L	<100	13,000
Surrogate o-Terphenyl	%	83	#

sTRH in Water (C10-C36) Silica Gel Clean		
Our Reference:	UNITS	9476-2
Your Reference		GW2
Date Sampled		13/10/2016
Type of sample		Water
Date extracted	-	18/10/2016
Date analysed	3	25/10/2016
TRHC10 - C14 (silica)	μg/L	230,000
TRHC ₁₅ - C ₂₈ (silica)	μg/L	940,000
TRHC29 - C36 (silica)	μg/L	17,000
TRH>C10 - C16 (silica)	μg/L	530,000
TRH>C16 - C34 (silica)	μg/L	650,000
TRH>C34 - C40 (silica)	μg/L	7,100
Surrogate o-Terphenyl	%	#

TRHID (C10-C36)*		
Our Reference:	UNITS	9476-3
Your Reference		GW2
		(Product)
Date Sampled		13/10/2016
Type of sample		Product
TRHID-best match*	-	٨

PAHs in Water Our Reference: Your Reference Date Sampled Type of sample	UNITS	9476-1 GW1 12/10/2016 Water
Date extracted	2	18/10/2016
Date analysed	-	19/10/2016
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	µg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b,j&k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Total+ve PAH's	µg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Surrogate p-Terphenyl-d14	%	74

PCBs in Water Our Reference: Your Reference	UNITS	9476-1 GW1
Date Sampled	************	12/10/2016
Type of sample		Water
Date extracted		18/10/2016
Date analysed	-	19/10/2016
Aroclor 1016	μg/L	<2
Aroclor 1221	μg/L	<2
Aroclor 1232	μg/L	<2
Aroclor 1242	μg/L	<2
Aroclor 1248	μg/L	<2
Aroclor 1254	μg/L	<2
Aroclor 1260	μg/L	<2
Surrogate TCLMX	%	56#

OCP in water Our Reference: Your Reference Date Sampled Type of sample	UNITS	9476-1 GW1 12/10/2016 Water
Date extracted	-	18/10/2016
Date analysed		19/10/2016
alpha-BHC	μg/L	<0.2
HCB	μg/L	<0.2
beta-BHC	μg/L	<0.2
gamma-BHC	μg/L	<0.2
Heptachlor	μg/L	<0.2
delta-BHC	μg/L	<0.2
Aldrin	μg/L	<0.2
Heptachlor Epoxide	μg/L	<0.2
gamma-Chlordane	μg/L	<0.2
alpha-Chlordane	μg/L	<0.2
Endosulfan I	μg/L	<0.2
pp-DDE	μg/L	<0.2
Dieldrin	μg/L	<0.2
Endrin	μg/L	<0.2
Endosulfan II	μg/L	<0.2
pp-DDD	μg/L	<0.2
Endrin Aldehyde	μg/L	<0.2
pp-DDT	μg/L	<0.2
Endosulfan Sulphate	μg/L	<0.2
Methoxychlor	μg/L	<0.2
Surrogate TCMX	%	56 #

Phthalates in water		
Our Reference:	UNITS	9476-1
Your Reference		GW1
Date Sampled		12/10/2016
Type of sample		Water
Date extracted		18/10/2016
Date analysed	-	19/10/2016
Dimethyl phthalate	μg/L	<10
Diethylphthalate	μg/L	<10
Di-n-butylphthalate	μg/L	<50
Butylbenzylphthalate	μg/L	<10
Bis(2-ethylhexyl) phthalate	μg/L	<50
Di-n-octylphthalate	µg/L	<10
Surrogate p-Terphenyl-d14	%	74

Speciated Phenols in Water Our Reference: Your Reference Date Sampled Type of sample	UNITS	9476-1 GW1 12/10/2016 Water
Date extracted		18/10/2016
Date analysed	-	19/10/2016
Phenol	μg/L	<1
2-Chlorophenol	μg/L	<1
2-Methylphenol	μg/L	<1
3/4-Methylphenol	μg/L	<2
2-Nitrophenol	μg/L	<1
2,4-Dimethylphenol	μg/L	<1
2,4-Dichlorophenol	μg/L	<1
2,6-Dichlorophenol	μg/L	<1
2,4,5-Trichlorophenol	μg/L	<1
2,4,6-Trichlorophenol	μg/L	<1
2,4-Dinitrophenol	μg/L	<10
4-Nitrophenol	μg/L	<20
2,3,4,6-Tetrachlorophenol	μg/L	<1
2-methyl-4,6-dinitrophenol	μg/L	<10
Pentachlorophenol	μg/L	<5
4-Chloro-3-Methylphenol	μg/L	<1
Surrogate Phenol-de	%	48

All metals in water-dissolved			
Our Reference:	UNITS	9476-1	9476-2
Your Reference		GW1	GW2
Date Sampled		12/10/2016	13/10/2016
Type of sample		Water	Water
Date prepared	-	18/10/2016	18/10/2016
Date analysed		18/10/2016	18/10/2016
Aluminium-Dissolved	μg/L	<10	18
Antimony-Dissolved	μg/L	<1	<1
Arsenic-Dissolved	μg/L	7	30
Barium-Dissolved	μg/L	140	41
Beryllium-Dissolved	μg/L	<0.5	<0.5
Boron-Dissolved	μg/L	3,000	290
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Cobalt-Dissolved	μg/L	4	1
Copper-Dissolved	μg/L	4	3
Iron-Dissolved	μg/L	12	2,800
Lead-Dissolved	μg/L	<1	3
Manganese-Dissolved	μg/L	36	46
Mercury-Dissolved	μg/L	<0.05	<0.05
Molybdenum-Dissolved	μg/L	7	<1
Nickel-Dissolved	μg/L	2	2
Selenium-Dissolved	μg/L	10	2
Silver-Dissolved	μg/L	<1	<1
Thallium-Dissolved	μg/L	<1	<1
Tin-Dissolved	μg/L	<1	5
Vanadium-Dissolved	μg/L	4	<1
Zinc-Dissolved	μg/L	17	31

Metals in Waters - Total			
Our Reference:	UNITS	9476-1	9476-2
Your Reference		GW1	GW2
Date Sampled		12/10/2016	13/10/2016
Type of sample		Water	Water
Date prepared	-	20/10/2016	20/10/2016
Date analysed	-	20/10/2016	20/10/2016
Phosphorus - Total	mg/L	0.1	23

Ion Balance Our Reference: Your Reference Date Sampled Type of sample	UNITS	9476-1 GW1 12/10/2016 Water
Date prepared	9	18/10/2016
Date analysed	-	18/10/2016
Calcium - Dissolved	mg/L	380
Potassium - Dissolved	mg/L	140
Sodium - Dissolved	mg/L	5,300
Magnesium - Dissolved	mg/L	580
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	2,500
Carbonate Alkalinity as CaCO3	mg/L	<5
Total Alkalinity as CaCO3	mg/L	2,500
Sulphate, SO4	mg/L	620
Chloride, Cl	mg/L	8,500
Ionic Balance	%	-0.34

Miscellaneous Inorganics Our Reference: Your Reference Date Sampled Type of sample	UNITS	9476-1 GW1 12/10/2016 Water
Date prepared	2	17/10/2016
Date analysed	-	18/10/2016
Fluoride, F	mg/L	0.5
Total Cyanide	mg/L	<0.004
Hexavalent Chromium, Cr6+	mg/L	<0.005
Total Nitrogen in water	mg/L	43
Nitrite as N in water	mg/L	0.045
Nitrate as N in water	mg/L	0.79
Ammonia as N in water	mg/L	0.16
TKN in water	mg/L	42
Total Dissolved Solids (grav)	mg/L	18,000
Salinity as NaCl*	g/L	15

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater 2013.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 22nd ED, 4110 -B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-013	Cyanide - total determined colourimetrically after distillation, based on APHA latest edition, 4500-CN_C,E. Free cyanide determined colourimetrically after filtration and confirmed by diffusion. Solids are extracted in a caustic media prior to distillation and analysis.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically by discrete analyser.

Methodology Summary
Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Soils are analysed following a water extraction.
Nitrate - determined colourimetrically. Soils are analysed following a water extraction.
Ammonia - determined colourimetrically based on EPA350.1 and APHA latest edition 4500-NH3 F, Soils are analysed following a KCI extraction.
TKN - determined colourimetrically based on APHA latest edition 4500 Norg.
Total Dissolved Solids - determined gravimetrically. The solids are dried at 180oC +/-5oC.
Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA latest edition 2510 and Rayment & Lyons.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
				000000000	Sm#	1000 T 10	A65 C1305 A71 1745	Recovery
/OCs in water		1				Base II Duplicate II %RPD		
Date extracted	*			21/10/2 016	[NT]	[NT]	LCS-1	21/10/2016
Date analysed	•			21/10/2 016	[NT]	[NT]	LCS-1	21/10/2016
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	101%
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chloroform	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	112%
2,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	100%
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	124%
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromomethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	114%
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	122%
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	105%
1,2-dibromoethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	118%
1,1,1,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	μg/L	2	Org-013	2	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL VOCs in water	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
o-xylene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-013	111	[NT]	[NT]	LCS-1	93%
Surrogate toluene-d8	%		Org-013	100	[NT]	[NT]	LCS-1	101%
Surrogate 4-BFB	%		Org-013	97	[NT]	[NT]	LCS-1	105%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II %RPD		nandates 1
Date extracted	940			21/10/2 016	[NT]	[NT]	LCS-1	21/10/2016
Date analysed	· ·			21/10/2 016	[NT]	[NT]	LCS-1	21/10/2016
TRHC6 - C9	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-1	105%
TRHC6 - C10	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-1	105%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-1	106%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-1	105%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-1	105%
m+p-xylene	μg/L	2	Org-016	2	[NT]	[NT]	LCS-1	105%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-1	104%
Naphthalene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	105%
Surrogate Dibromofluoromethane	%		Org-016	116	[NT]	[NT]	LCS-1	91%
Surrogate toluene-d8	%		Org-016	102	[NT]	[NT]	LCS-1	100%
Surrogate 4-BFB	%		Org-016	101	[NT]	[NT]	LCS-1	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
TRH Water(C10-C40) NEPM						Base II Duplicate II %RPD		
Date extracted	-			18/10/2 016	[NT]	[NT]	LCS-1	18/10/2016
Date analysed	-			18/10/2 016	[NT]	[NT]	LCS-1	18/10/2016
TRHC10 - C14	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-1	60%
TRHC15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	73%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	93%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-1	60%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	73%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	93%
Surrogate o-Terphenyl	%		Org-003	68	[NT]	[NT]	LCS-1	116%

		Clie	nt Referenc	e: 15	0738-01 - KI	PT Smith Bay Baselin	e Assessm.	<u> </u>
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTRH in Water (C10- C36) Silica Gel Clean				i di		Base II Duplicate II %RPD		
Date extracted	3*3			18/10/2 016	[NT]	[NT]	LCS-1	25/10/2016
Date analysed	·			25/10/2 016	[NT]	[NT]	LCS-1	25/10/2016
TRHC ₁₀ - C ₁₄ (silica)	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-1	76%
TRHC ₁₅ - C ₂₈ (silica)	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	124%
TRHC29 - C36 (silica)	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	90%
TRH>C10 - C16 (silica)	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-1	77%
TRH>C10 - C16 less Naphthalene (F2)	μg/L	50	Org-003	<50	[NT]	[NT]	[NR]	[NR]
TRH>C16 - C34 (silica)	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	130%
TRH>C34 - C40 (silica)	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	94%
Surrogate o-Terphenyl	%		Org-003	75	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
TRHID(C10-C36)*	161					Base II Duplicate II %RPD		
TRHID-best match*	-		AT-008	[NT]	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water					F-28/100*11	Base II Duplicate II %RPD		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Date extracted				18/10/2 016	[NT]	[NT]	LCS-1	18/10/2016
Date analysed	9 7 8			19/10/2 016	[NT]	[NT]	LCS-1	19/10/2016
Naphthalene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	80%
Acenaphthylene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	84%
Acenaphthene	μg/L	1	Org-012	<1	[NT]	[TN]	[NR]	[NR]
Fluorene	µg/L	1	Org-012	<1	[NT]	[TN]	LCS-1	90%
Phenanthrene	μg/L	1	Org-012	<1	[NT]	[TN]	LCS-1	86%
Anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	100%
Pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	98%
Benzo(a)anthracene		1	Org-012	<1	[NT]	[TN]	[NR]	[NR]
	μg/L	1 3			1	0.177	1 00 4	96%
Chrysene	μg/L μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	0070
	3942.5	1	452	<1 <2	[NT] [NT]	[ти]	[NR]	[NR]
Chrysene Benzo(b,j&k)	µg/L	1	Org-012	2020				777.5445
Chrysene Benzo(b,j&k) fluoranthene	μg/L μg/L	1 2	Org-012 Org-012	2	[NT]	[TN]	[NR]	[NR]
Chrysene Benzo(b,j&k) fluoranthene Benzo(a)pyrene	µg/L µg/L µg/L	1 2	Org-012 Org-012	<2 <1	[NT] [NT]	[TN]	[NR]	[NR] 108%

		Clie	nt Reference	e: 15	50738-01 - KI	PT Smith Bay Baselin	e Assessm.	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water					2.50.10-1	Base II Duplicate II %RPD		Page-1200 123 8 19
Surrogate p-Terphenyl-	%		Org-012	66	[NT]	[NT]	LCS-1	84%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Water					hydraksta	Base II Duplicate II %RPD		Used Denemorates &
Date extracted			18/10/2 [NT] [NT] 016		LCS-1	18/10/2016		
Date analysed	-			19/10/2 016	[NT]	[NT]	LCS-1	19/10/2016
Aroclor 1016	μg/L	2	Org-006	<2	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	μg/L	2	Org-006	<2	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	μg/L	2	Org-006	<2	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	μg/L	2	Org-006	<2	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	μg/L	2	Org-006	<2	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	μg/L	2	Org-006	<2	[NT]	[NT]	LCS-1	100%
Aroclor 1260	μg/L	2	Org-006	<2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	60	[TN]	[NT]	LCS-1	62%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
OCP in water		143			Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	5 * 5			18/10/2 016	[TN]	[ИТ]	LCS-1	18/10/2016
Date analysed	·			19/10/2 016	[NT]	[TN]	LCS-1	19/10/2016
alpha-BHC	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	94%
HCB	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
beta-BHC	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	90%
gamma-BHC	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
Heptachlor	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	96%
delta-BHC	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
Aldrin	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	92%
Heptachlor Epoxide	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	96%
gamma-Chlordane	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	98%
alpha-Chlordane	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan I	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDE	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	100%
Dieldrin	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	96%
Endrin	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	108%
Endosulfan II	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDD	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	100%
Endrin Aldehyde	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDT	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-1	98%
Methoxychlor	μg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	60	[NT]	[NT]	LCS-1	62%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Phthalates in water						Base II Duplicate II %RPD		mentany side i
Date extracted	-			18/10/2 016	[NT]	[NT]	LCS-1	18/10/2016
Date analysed	-			19/10/2 016	[NT]	[NT]	LCS-1	19/10/2016
Dimethyl phthalate	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-1	98%
Diethylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-1	98%
Di-n-butylphthalate	μg/L	50	Org-012	<50	[NT]	[NT]	[NR]	[NR]
Butylbenzylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Bis(2-ethylhexyl) phthalate	µg/L	50	Org-012	<50	[NT]	[NT]	[NR]	[NR]
Di-n-octylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	66	[NT]	[NT]	LCS-1	84%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
Speciated Phenols in Water						Base II Duplicate II %RPD		
Date extracted	14			18/10/2 016	[NT]	[NT]	LCS-1	18/10/2016
Date analysed	(4)			19/10/2 016	[NT]	[NT]	LCS-1	19/10/2016
Phenol	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	58%
2-Chlorophenol	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	80%
2-Methylphenol	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	74%
3/4-Methylphenol	μg/L	2	Org-012	2	[NT]	[NT]	[NR]	[NR]
2-Nitrophenol	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
2,4-Dimethylphenol	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
2,4-Dichlorophenol	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
2,6-Dichlorophenol	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-1	82%
2,4,5-Trichlorophenol	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
2,4,6-Trichlorophenol	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
2,4-Dinitrophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
4-Nitrophenol	μg/L	20	Org-012	<20	[NT]	[NT]	[NR]	[NR]
2,3,4,6- Tetrachlorophenol	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
2-methyl-4,6- dinitrophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachlorophenol	μg/L	5	Org-012	<5	[NT]	[NT]	LCS-1	100%
4-Chloro-3-Methylphenol	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Phenol-de	%		Org-012	52	[NT]	[NT]	LCS-1	60%

QUALITYCONTROL	UNITS PQL METHOD Blank		Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
All metals in water- dissolved					Siller	Base II Duplicate II %RPD		Recovery
Date prepared	*			18/10/2 016	[NT]	[NT]	LCS-1	18/10/2016
Date analysed	-			18/10/2 016	[NT]	[NT]	LCS-1	18/10/2016
Aluminium-Dissolved	μg/L	10	Metals-022 ICP-MS	<10	[NT]	[NT]	LCS-1	111%
Antimony-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	111%
Arsenic-Dissolved	μg/L	.1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	103%
Barium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	107%
Beryllium-Dissolved	μg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]	[NT]	LCS-1	99%
Boron-Dissolved	μg/L	5	Metals-022 ICP-MS	<5	[NT]	[NT]	LCS-1	108%
Cadmium-Dissolved	μg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-1	107%
Chromium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	108%
Cobalt-Dissolved	μg/L	.1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	99%
Copper-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	101%
Iron-Dissolved	μg/L	10	Metals-022 ICP-MS	<10	[NT]	[ПП]	LCS-1	105%
Lead-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	103%
Manganese-Dissolved	μg/L	5	Metals-022 ICP-MS	<5	[NT]	[NT]	LCS-1	103%
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]	[NT]	LCS-1	115%
Molybdenum-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	101%
Nickel-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	101%
Selenium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	105%
Silver-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	105%
Thallium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	109%
Tin-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	118%
Vanadium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	109%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-1	101%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in Waters - Total						Base II Duplicate II %RPD		
Date prepared	9			20/10/2 016	9476-1	20/10/2016 20/10/2016	LCS-1	20/10/2016
Date analysed	-			20/10/2 016	9476-1	20/10/2016 20/10/2016	LCS-1	20/10/2016
Phosphorus - Total	mg/L	0.05	Metals-020 ICP-AES	<0.05	9476-1	0.1 0.2 RPD:67	LCS-1	94%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
on Balance						Base II Duplicate II %RPD		1.22.4.4.1.2.7.1
Date prepared	N a S			18/10/2 016	9476-1	18/10/2016 18/10/2016	LCS-1	18/10/2016
Date analysed	(*)			18/10/2 016	9476-1	18/10/2016 18/10/2016	LCS-1	18/10/2016
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	9476-1	380 360 RPD: 5	LCS-1	108%
Potassium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	9476-1	140 130 RPD:7	LCS-1	108%
Sodium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	9476-1	5300 5100 RPD:4	LCS-1	105%
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	9476-1	580 560 RPD: 4	LCS-1	106%
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	9476-1	<5 <5	[NR]	[NR]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	9476-1	2500 2500 RPD: 0	LCS-1	108%
Carbonate Alkalinity as CaCO3	mg/L	5	Inorg-006	<5	9476-1	<5 <5	[NR]	[NR]
Total Alkalinity as CaCO3	mg/L	5	Inorg-006	<5	9476-1	2500 2500 RPD: 0	LCS-1	108%
Sulphate, SO4	mg/L	1	Inorg-081	<1	9476-1	620 660 RPD:6	LCS-1	110%
Chloride, Cl	mg/L	1	Inorg-081	<1	9476-1	8500 7900 RPD: 7	LCS-1	123%
Ionic Balance	%		Inorg-040	[NT]	9476-1	-0.34 0.77 RPD:516	[NR]	[NR]

		Cile	nt Reference	e: 1	00/38-01 - KI	PT Smith Bay Baselin	e Assessm.		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Miscellaneous Inorganics					1.00	Base II Duplicate II %RPD			
Date prepared	•			17/10/2 016	[NT]	[NT]	LCS-1	17/10/201	6
Date analysed	•			18/10/2 016	[NT]	[NT]	LCS-1	18/10/201	6
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	[NT]	[NT]	LCS-1	96%	
Total Cyanide	mg/L	0.004	Inorg-013	<0.004	[NT]	[NT]	LCS-1	117%	
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	<0.005	[NT]	[NT]	LCS-1	90%	
Total Nitrogen in water	mg/L	0.1	Inorg- 055/062	<0.1	[NT]	[NT]	[NR]	[NR]	
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]	[NT]	LCS-1	86%	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]	[NT]	LCS-1	83%	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]	[NT]	LCS-1	80%	
TKN in water	mg/L	0.1	Inorg-062	<0.1	[NT]	[NT]	LCS-1	102%	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	[NT]	[NT]	LCS-1	98%	
Salinity as NaCI*	g/L	1	Inorg-002	<1.0	[NT]	[NT]	[NR]	[NR]	
QUALITY CONTROL Ion Balance	UNITS	1	Dup. Sm#	Base+I	Duplicate Duplicate + %RP	Spike Sm#	Spike % Reco	very	
Date prepared	-		[NT]		[NT]	9476-1	18/10/201	6	
Date analysed			[NT]		[NT]	9476-1	18/10/201		
Calcium - Dissolved	mg/L		[NT]		[NT]	9476-1	103%		
Potassium-Dissolved	mg/L		[NT]		[NT]	9476-1	106%		
Sodium - Dissolved						9476-1	96%		
	mg/L		[NT]		[NT]	UNDOMETRIC (4) TO	10000000		
Magnesium - Dissolved	mg/L		[NT]		[NT]	9476-1	101%		
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L		[NT]		[NT]	[NR]	[NR]		
Bicarbonate Alkalinity as CaCO ₃	mg/L		[NT]		[NT]	[NR]	[NR]		
Carbonate Alkalinity as CaCO3	mg/L		[NT]		[NT]	[NR]	[NR]		
Total Alkalinity as CaCO ₃	mg/L		[NT]		[NT]	[NR]	[NR]		
Sulphate, SO4	mg/L		[NT]		[NT]	[NR]	[NR]		
Chloride, CI	mg/L		[NT]		[NT]	[NR]	[NR]		
Ionic Balance	%		[NT]		[NT]	[NR]	[NR]		

Report Comments:

Total Cyanide and TKN analysed by Envirolab Sydney, report 155513.

SVOC: # Percent recovery low due to sample emulsification.

*Acid Extractable Metals in Soil:

^Compared to the Envirolab Reference library the closest match to sample GW2-product was diesel.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested NR: Test not required RPD: Relative Percent Difference NA: Test not required

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

DATA QUALITY ASSESSMENT SUMMARY

Report Details		
Envirolab Report Reference	9476	
Client ID	LBW Environmental Projects	
Project Reference	150738-01 - KIPT Smith Bay Baseline Assessm.	
Date Issued	26/10/2016	

QC DATA:

All laboratory QC data was within the Envirolab Group's specifications except:

QC Type	Reference	Analysis	Comments	
Surrogate Recovery %	9476-1	OCP in water - Surrogate TCMX	Fails internal acceptance criteria	
Surrogate Recovery %	9476-1	PCBs in Water - Surrogate TCLMX	Fails internal acceptance criteria	
Surrogate Recovery %	9476-2	TRH Water(C10-C40) NEPM - Surrogate	Fails internal acceptance criteria	
Surrogate Recovery %	9476-2	sTRH in Water (C10- C36) Silica Gel Clean - Surrogate	Fails internal acceptance criteria	

See Report 9476-[R00] for QA/QC details

HOLDING TIME COMPLIANCE EVALUATION:

The table below summarizes compliance with preservation / holding times (based on AS/APHA/ISO/NEPM/USEPA reference documents and standards):-

Analysis	Date Sampled	Date Extracted	Date Analysed	Accept
All metals in water-dissolved	12/10/2016	18/10/2016	18/10/2016	1
	13/10/2016	18/10/2016	18/10/2016	1
Ion Balance				
Bicarbonate Alkalinity as CaCO ₃	12/10/2016	18/10/2016	18/10/2016	1
Carbonate Alkalinity as CaCO ₃	12/10/2016	18/10/2016	18/10/2016	1
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	12/10/2016	18/10/2016	18/10/2016	1
Total Alkalinity as CaCO ₃	12/10/2016	18/10/2016	18/10/2016	1
Chloride, Cl	12/10/2016	18/10/2016	18/10/2016	/
Sulphate, SO4	12/10/2016	18/10/2016	18/10/2016	/
Ionic Balance	12/10/2016	18/10/2016	18/10/2016	/
Calcium - Dissolved	12/10/2016	18/10/2016	18/10/2016	1
Potassium - Dissolved	12/10/2016	18/10/2016	18/10/2016	1
Magnesium - Dissolved	12/10/2016	18/10/2016	18/10/2016	/
Sodium - Dissolved	12/10/2016	18/10/2016	18/10/2016	1
Metals in Waters - Total	12/10/2016	20/10/2016	20/10/2016	/
	13/10/2016	20/10/2016	20/10/2016	1
Miscellaneous Inorganics				
Ammonia as N in water	12/10/2016	17/10/2016	18/10/2016	/
	13/10/2016	17/10/2016	18/10/2016	/
Total Cyanide	12/10/2016	17/10/2016	18/10/2016	/

Envirolab Services Pty Ltd - Melbourne ABN 37 112 535 645 -02 1 Dalmore Drive, Scoresby, VIC 3179 Australia Ph +613 9763 2500 Fax +613 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

Fluoride, F	12/10/2016	17/10/2016	18/10/2016	/
Hexavalent Chromium, Cr ⁶⁺	12/10/2016	17/10/2016	18/10/2016	/
Nitrate as N in water	12/10/2016	17/10/2016	18/10/2016	/
	13/10/2016	17/10/2016	18/10/2016	1
Nitrite as N in water	12/10/2016	17/10/2016	18/10/2016	1
	13/10/2016	17/10/2016	18/10/2016	1
TKN in water	12/10/2016	17/10/2016	18/10/2016	1
	13/10/2016	17/10/2016	18/10/2016	1
Total Nitrogen in water	12/10/2016	17/10/2016	18/10/2016	1
	13/10/2016	17/10/2016	18/10/2016	1
OCP in water	12/10/2016	18/10/2016	19/10/2016	1
PAHs in Water	12/10/2016	18/10/2016	19/10/2016	1
PCBs in Water	12/10/2016	18/10/2016	19/10/2016	1
Phthalates in water	12/10/2016	18/10/2016	19/10/2016	1
Speciated Phenols in Water	12/10/2016	18/10/2016	19/10/2016	/
sTRH in Water (C10-C36) Silica Gel Clean	13/10/2016	18/10/2016	25/10/2016	/
TRH ID (C10-C36)*	13/10/2016			1
TRH Water(C10-C40) NEPM	12/10/2016	18/10/2016	19/10/2016	1
Topical Control Contro	13/10/2016	18/10/2016	19/10/2016	1
VOCs in water	12/10/2016	21/10/2016	21/10/2016	1
vTRH(C6-C10)/BTEXN in Water	12/10/2016	21/10/2016	21/10/2016	/

COMPLIANCE TO QC FREQUENCY (NEPM):

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

	Evaluation
Duplicate(s) was performed as per NEPM frequency	/
Laboratory Control Sample(s) was analysed with the samples received	✓.
A Method Blank was performed with the samples received	✓
Matrix spike(s) was performed as per NEPM frequency	V

Refer to Certificate of Analysis for all Quality Control data.

ADDITIONAL REPORT COMMENTS:

Total Cyanide and TKN analysed by Envirolab Sydney, report 155513.

SVOC: # Percent recovery low due to sample emulsification.

*Acid Extractable Metals in Soil:

 ${}^{\wedge}\text{Compared}$ to the Envirolab Reference library the closest match to sample GW2-product was diesel.


LABORATORY TESTING ORDER

Primary Laboratory: Envirolab
Laboratory Quote Ref: 16078SA
Secondary Laboratory:
Laboratory Quote Ref:
Turnaround Required
Standard

		SAMPLE	DETAILS		CHEMICAL TESTING REQUIRED										
	Date Sampled	Sample ID	Sample Matrix	Additional information / Comments	NEPM GIL	Mojer form (Ca, K, Mg, Na, Cl, SOA, A, alkalhalh)	Numerals (folial nitrogen, vilinile, vilindre, caramonia, TCN and total P	100 - 100 -	metals - NEPA 13	Product 1.D.					
1	12.10.2016	GW1	water		1	1	1								
2	13.10.2016	GW2	liquid				1		1						
,=	1	GWZ-produce	· i						\top	1		_	_		
-									-						
									Ţ						
								\perp							
	ENVIROLAB	Envirolab Servi 1a Dalmore D. Caribbean P. Scoresby VIC 3	ive ark												
	Job No:	Scoresby VIC 3 Ph: (03) 9763 2	500												
	Date Roceiv	Lil:													
	Received by	MS	14.5	C							_				
	Cooling: Ice	Mcapack													
}	Security: (1	act/Broken/None						+							
														10	
-	LBW ep AUTHORISATION			BORATORY RECEIPT					1	1-	Щ				
- 1	equented by: rad Fitzgeratd		M.S	Den					Additio	nal Cor	nments				
- 1.	rie\time requested: 7-Oct-16		17/10												
54	gneture: rad Fitzgerald		Signature:	2.											

I:\Jobs\2015\150738-01 KIPT Smith Bay- Baseline Site Assessment\COC\150738-01 LTO-01_GW.xlsx

Page __150738-01___ of __1__

email: melbourne@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Melbourne | ABN 37 112 535 645 - 002

CERTIFICATE OF ANALYSIS 9476-A

Client:

LBW Environmental Projects

184 Magill Road Norwood SA 5067

Attention: Brad Fitzgerald

Sample log in details:

Your Reference: 150738-01 - KIPT Smith Bay Baseline Assessm.

No. of samples: 2 Waters

Date samples received / completed instructions received 17/10/2016 / 27/10/2016

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 7/11/16 / 7/11/16

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

Chris De Luca Senior Chemist

sTRH in Water (C10-C36) Silica Gel Clean		
Our Reference:	UNITS	9476-A-1
Your Reference		GW1
Date Sampled		12/10/2016
Type of sample		Water
Date extracted	×	18/10/2016
Date analysed	-	04/11/2016
TRHC10 - C14 (silica)	μg/L	<50
TRHC15 - C28 (silica)	μg/L	<100
TRHC29 - C36 (silica)	μg/L	<100
TRH>C10 - C16 (silica)	μg/L	<50
TRH>C10 - C16 less Naphthalene (F2)	μg/L	<50
TRH>C16 - C34 (silica)	μg/L	<100
TRH>C34 - C40 (silica)	μg/L	<100
Surrogate o-Terphenyl	%	65%

Method ID	MethodologySummary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
TRH in Water (C10-						Base II Duplicate II %RPD		
C36) Silica Gel Clean						**		
Date extracted	1,41			18/10/2 016	[NT]	[NT]	LCS-1	04/11/2016
Date analysed	S#3			04/11/2 016	[NT]	[NT]	LCS-1	04/11/2016
TRHC10 - C14 (silica)	μg/L	50	Org-003	<50	[NT]	[TN]	LCS-1	87%
TRHC ₁₅ - C ₂₈ (silica)	μg/L	100	Org-003	<100	[NT]	[TN]	LCS-1	80%
TRHC29 - C36 (silica)	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	90%
TRH>C10 - C16 (silica)	μg/L	50	Org-003	<50	[NT]	[ГИ]	LCS-1	91%
TRH>C10 - C16 less Naphthalene (F2)	µg/L	50	Org-003	<50	[NT]	[NT]	[NR]	[NR]
TRH>C16 - C34 (silica)	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	99%
TRH>C34 - C40 (silica)	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-1	100%
Surrogate o-Terphenyl	%		Org-003	66	[NT]	[NT]	[NR]	[NR]

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

DATA QUALITY ASSESSMENT SUMMARY

Report Details		
Envirolab Report Reference	9476-A	
Client ID	LBW Environmental Projects	
Project Reference	150738-01 - KIPT Smith Bay Baseline Assessm.	
Date Issued	07/11/2016	

QC DATA:

All laboratory QC data was within the Envirolab Group's specifications

See Report 9476-A-[R00] for QA/QC details

HOLDING TIME COMPLIANCE EVALUATION:

The table below summarizes compliance with preservation / holding times (based on AS/APHA/ISO/NEPM/USEPA reference documents and standards):-

Analysis	Date Sampled	Date Extracted	Date Analysed	Accept
sTRH in Water (C10-C36) Silica Gel Clean	12/10/2016	18/10/2016	04/11/2016	1

COMPLIANCE TO QC FREQUENCY (NEPM):

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

	Evaluation
Duplicate(s) was performed as per NEPM frequency	/
Laboratory Control Sample(s) was analysed with the samples received	✓
A Method Blank was performed with the samples received	✓
Matrix spike(s) was performed as per NEPM frequency	✓

Refer to Certificate of Analysis for all Quality Control data.

ADDITIONAL REPORT COMMENTS:

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	LBW Environmental Projects
Attention	Brad Fitzgerald

Sample Login Details	
Your Reference	150738-01 - KIPT Smith Bay Baseline Assessm.
Envirolab Reference	9476-A
Date Sample Received	17/10/2016
Date Instructions Received	27/10/2016
Date Results Expected to be Reported	07/11/2016

Sample Condition			
Samples received in appropriate condition for analysis	YES		
No. of Samples Provided	2 Waters		
Turnaround Time Requested	Standard		
Temperature on receipt (°C)	14.5C		
Cooling Method	Ice Pack		
Sampling Date Provided	YES		

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Pamela Adams	Analisa Mathrick		
Phone: 03 9763 2500	Phone: 03 9763 2500		
Fax: 03 9763 2633	Fax: 03 9763 2633		
Email: padams@envirolab.com.au	Email: amathrick@envirolab.com.au		

Sample and Testing Details on following page

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample Id	sTRH in Water (C10- C36) Silica Gel Clean	Dn Hold
GW1	1	
GW2		√
GW2 (Product)		1

Marian Saad

9476-A

From:

Viviana Paradiso

Sent:

Thursday, 27 October 2016 4:27 PM

To:

MelbourneMailbox

Subject:

FW: 9476 Silica Gel Clean-up

Please see request below.

Regards,

Viviana Paradiso | Customer Service Representative Adelaide | Envirolab Group

Great Chemistry, Great Service.

7a The Parade Norwood SA 5067 T 08 7087 6800 F 08 8362 1776 M 0427292399 vparadiso@envirolab.com.au | www.envirolab.com.au

Follow this link to provide feedback on our service.

Latest Links Below:

Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link

From: Brad Fitzgerald [mailto:brad.fitzgerald@lbwep.com.au]

Sent: Thursday, 27 October 2016 3:53 PM

To: Adelaide Distribution

Cc: Alex Stenta

Subject: 9476 Silica Gel Clean-up

Hi,

#1

Can I please get a silica gel clean up on GW1 from report 9476?

Kind regards,

Brad

Brad Fitzgerald

Senior Environmental Consultant

184 Magill Road, Norwood SA 5067 | PO Box 225 Stepney SA 5069

